先生2人と生徒6人が円卓のまわりに座る。 (1)先生2人が隣り合う座り方は何通りあるか。 (2)先生2人が向かい合う座り方は何通りあるか。

その他場合の数円順列組み合わせ
2025/5/14

1. 問題の内容

先生2人と生徒6人が円卓のまわりに座る。
(1)先生2人が隣り合う座り方は何通りあるか。
(2)先生2人が向かい合う座り方は何通りあるか。

2. 解き方の手順

(1)先生2人が隣り合う場合
まず、先生2人を1つのグループとして考えます。すると、生徒6人と合わせて、合計7つのグループを円卓に並べることになります。円卓の並べ方の総数は、
(71)!=6!=720(7-1)! = 6! = 720
通りです。さらに、先生2人の並び順は2通りあります。したがって、求める座り方は
720×2=1440720 \times 2 = 1440
通りです。
(2)先生2人が向かい合う場合
まず、1人の先生の席を固定します。すると、もう1人の先生の席は向かい側に決定します。残りの席は6つあり、生徒6人を並べることになります。この並べ方は、
6!=7206! = 720
通りです。

3. 最終的な答え

(1) 1440通り
(2) 720通り

「その他」の関連問題

父、母、そして5人の子供A, B, C, D, Eの合計7人が円形に並ぶ。ただし、子供Aが父と母に挟まれるように並ぶ並び方は何通りあるか。回転して同じになるものは同一視する。

順列円順列場合の数組み合わせ
2025/7/24

全体集合 $U = \{1, 2, 3, 4, 5, 6\}$、集合 $A = \{1, 2, 3, 4\}$、集合 $B = \{2, 4, 6\}$ が与えられたとき、集合 $A \cup \ov...

集合集合演算補集合和集合
2025/7/24

マグネシウム4.8gを燃焼させて酸化マグネシウムにした。酸素の原子量は16、マグネシウムの原子量は24とする。以下の問いに答えよ。 (1) マグネシウムの燃焼を化学反応式で表せ。 (2...

化学物質量化学反応式原子量モル質量密度
2025/7/24

## 解答

逆三角関数順列組合せ重複組合せ二項定理確率期待値事象の独立性
2025/7/23

写像 $f: A \to B$ と、集合 $A$ の部分集合族 $\{P_\lambda\}_{\lambda \in \Lambda}$ が与えられたとき、以下の命題が成り立つための条件を、「正しい...

集合論写像単射包含関係集合族
2025/7/23

与えられた複素数を極形式で表す問題です。 (1) $\sqrt{3} + i$ (2) $1 - i$ 偏角 $\theta$ の範囲は $0 \leq \theta \leq 2\pi$ です。

複素数極形式複素平面絶対値偏角
2025/7/23

$A, B$ は順序集合であり、$f: A \to B$ は $A$ から $B$ への写像である。任意の $a, a' \in A$ に対して、$f(a) \leq_B f(a')$ ならば $a ...

集合論写像順序集合単射証明
2025/7/23

n を集合の濃度、1 を一点集合の濃度とするとき、$n^1 = n$ を示す問題です。構成した写像が全単射であることの証明は省略して良いとのことです。

集合論濃度写像べき乗全単射
2025/7/23

写像 $f: A \to B$ と、$A$ の部分集合族 $(P_\lambda)_{\lambda \in \Lambda}$ が与えられたとき、包含関係 $\bigcup_{\lambda \in...

写像集合論包含関係証明
2025/7/23

与えられた2つの命題の真偽を判定し、正しい組み合わせを選択する問題です。 命題は以下の通りです。 (1) $|x| = |y|$ ならば $x = y$ (2) $a^3 > b^3$ ならば $a ...

命題真偽判定絶対値不等式因数分解
2025/7/23