与えられた式を計算し、簡略化する問題です。式は以下の通りです。 $(x^2 - y^2)(x + y) + (y^2 - z^2)(y + z) + (z^2 - x^2)(z + x)$代数学式の展開因数分解多項式2025/5/151. 問題の内容与えられた式を計算し、簡略化する問題です。式は以下の通りです。(x2−y2)(x+y)+(y2−z2)(y+z)+(z2−x2)(z+x)(x^2 - y^2)(x + y) + (y^2 - z^2)(y + z) + (z^2 - x^2)(z + x)(x2−y2)(x+y)+(y2−z2)(y+z)+(z2−x2)(z+x)2. 解き方の手順まず、各項を展開します。(x2−y2)(x+y)=x3+x2y−xy2−y3(x^2 - y^2)(x + y) = x^3 + x^2y - xy^2 - y^3(x2−y2)(x+y)=x3+x2y−xy2−y3(y2−z2)(y+z)=y3+y2z−yz2−z3(y^2 - z^2)(y + z) = y^3 + y^2z - yz^2 - z^3(y2−z2)(y+z)=y3+y2z−yz2−z3(z2−x2)(z+x)=z3+z2x−x2z−x3(z^2 - x^2)(z + x) = z^3 + z^2x - x^2z - x^3(z2−x2)(z+x)=z3+z2x−x2z−x3次に、これらの展開した項をすべて足し合わせます。(x3+x2y−xy2−y3)+(y3+y2z−yz2−z3)+(z3+z2x−x2z−x3)=(x^3 + x^2y - xy^2 - y^3) + (y^3 + y^2z - yz^2 - z^3) + (z^3 + z^2x - x^2z - x^3) =(x3+x2y−xy2−y3)+(y3+y2z−yz2−z3)+(z3+z2x−x2z−x3)=x3−x3+x2y−x2z−xy2+xz2+y3−y3+y2z−yz2+z3−z3x^3 - x^3 + x^2y - x^2z - xy^2 + xz^2 + y^3 - y^3 + y^2z - yz^2 + z^3 - z^3x3−x3+x2y−x2z−xy2+xz2+y3−y3+y2z−yz2+z3−z3=x2y−xy2+y2z−yz2+z2x−zx2= x^2y - xy^2 + y^2z - yz^2 + z^2x - zx^2=x2y−xy2+y2z−yz2+z2x−zx2この式を因数分解します。x2y−xy2+y2z−yz2+z2x−zx2=x2(y−z)+y2(z−x)+z2(x−y)x^2y - xy^2 + y^2z - yz^2 + z^2x - zx^2 = x^2(y - z) + y^2(z - x) + z^2(x - y)x2y−xy2+y2z−yz2+z2x−zx2=x2(y−z)+y2(z−x)+z2(x−y)=x2(y−z)−y2((y−z)−(x−y))+z2(x−y)= x^2(y - z) - y^2((y-z) - (x-y)) + z^2(x - y)=x2(y−z)−y2((y−z)−(x−y))+z2(x−y)=x2(y−z)−y2(z−x)+z2(x−y)= x^2(y-z) - y^2(z-x) + z^2(x-y)=x2(y−z)−y2(z−x)+z2(x−y)=x2(y−z)+y2z−y2x+z2x−z2y= x^2(y-z) + y^2z - y^2x + z^2x - z^2y=x2(y−z)+y2z−y2x+z2x−z2y=x2(y−z)−x(y2−z2)+yz(y−z)= x^2(y-z) - x(y^2-z^2) + yz(y-z)=x2(y−z)−x(y2−z2)+yz(y−z)=(y−z)(x2−x(y+z)+yz)= (y-z)(x^2-x(y+z)+yz)=(y−z)(x2−x(y+z)+yz)=(y−z)(x2−xy−xz+yz)= (y-z)(x^2-xy-xz+yz)=(y−z)(x2−xy−xz+yz)=(y−z)[x(x−y)−z(x−y)]= (y-z)[x(x-y)-z(x-y)]=(y−z)[x(x−y)−z(x−y)]=(y−z)(x−y)(x−z)= (y-z)(x-y)(x-z)=(y−z)(x−y)(x−z)=−(x−y)(y−z)(z−x)= - (x-y)(y-z)(z-x)=−(x−y)(y−z)(z−x)3. 最終的な答え(x−y)(y−z)(z−x)(x-y)(y-z)(z-x)(x−y)(y−z)(z−x)−(x−y)(y−z)(x−z)-(x-y)(y-z)(x-z)−(x−y)(y−z)(x−z)00