(4) $(x-1)(x+2)(x-3)(x-6)$を展開せよ。 (2) $(x^2+x+1)(2x^2+2x-3)$を展開せよ。代数学多項式の展開因数分解代数2025/5/151. 問題の内容(4) (x−1)(x+2)(x−3)(x−6)(x-1)(x+2)(x-3)(x-6)(x−1)(x+2)(x−3)(x−6)を展開せよ。(2) (x2+x+1)(2x2+2x−3)(x^2+x+1)(2x^2+2x-3)(x2+x+1)(2x2+2x−3)を展開せよ。2. 解き方の手順(4) まず、式を並び替えて(x−1)(x−3)(x-1)(x-3)(x−1)(x−3)と(x+2)(x−6)(x+2)(x-6)(x+2)(x−6)を計算します。(x−1)(x−3)=x2−3x−x+3=x2−4x+3(x-1)(x-3) = x^2 - 3x - x + 3 = x^2 - 4x + 3(x−1)(x−3)=x2−3x−x+3=x2−4x+3(x+2)(x−6)=x2−6x+2x−12=x2−4x−12(x+2)(x-6) = x^2 - 6x + 2x - 12 = x^2 - 4x - 12(x+2)(x−6)=x2−6x+2x−12=x2−4x−12次に、 (x2−4x+3)(x2−4x−12)(x^2 - 4x + 3)(x^2 - 4x - 12)(x2−4x+3)(x2−4x−12)を計算します。A=x2−4xA = x^2 - 4xA=x2−4xとおくと、(A+3)(A−12)=A2−12A+3A−36=A2−9A−36(A + 3)(A - 12) = A^2 - 12A + 3A - 36 = A^2 - 9A - 36(A+3)(A−12)=A2−12A+3A−36=A2−9A−36A=x2−4xA = x^2 - 4xA=x2−4xを代入すると、(x2−4x)2−9(x2−4x)−36=x4−8x3+16x2−9x2+36x−36=x4−8x3+7x2+36x−36(x^2 - 4x)^2 - 9(x^2 - 4x) - 36 = x^4 - 8x^3 + 16x^2 - 9x^2 + 36x - 36 = x^4 - 8x^3 + 7x^2 + 36x - 36(x2−4x)2−9(x2−4x)−36=x4−8x3+16x2−9x2+36x−36=x4−8x3+7x2+36x−36(2) (x2+x+1)(2x2+2x−3)(x^2+x+1)(2x^2+2x-3)(x2+x+1)(2x2+2x−3)を展開します。(x2+x+1)(2x2+2x−3)=x2(2x2+2x−3)+x(2x2+2x−3)+1(2x2+2x−3)=2x4+2x3−3x2+2x3+2x2−3x+2x2+2x−3=2x4+(2x3+2x3)+(−3x2+2x2+2x2)+(−3x+2x)−3=2x4+4x3+x2−x−3(x^2+x+1)(2x^2+2x-3) = x^2(2x^2+2x-3) + x(2x^2+2x-3) + 1(2x^2+2x-3) = 2x^4+2x^3-3x^2 + 2x^3+2x^2-3x + 2x^2+2x-3 = 2x^4 + (2x^3+2x^3) + (-3x^2+2x^2+2x^2) + (-3x+2x) - 3 = 2x^4 + 4x^3 + x^2 - x - 3(x2+x+1)(2x2+2x−3)=x2(2x2+2x−3)+x(2x2+2x−3)+1(2x2+2x−3)=2x4+2x3−3x2+2x3+2x2−3x+2x2+2x−3=2x4+(2x3+2x3)+(−3x2+2x2+2x2)+(−3x+2x)−3=2x4+4x3+x2−x−33. 最終的な答え(4) x4−8x3+7x2+36x−36x^4 - 8x^3 + 7x^2 + 36x - 36x4−8x3+7x2+36x−36(2) 2x4+4x3+x2−x−32x^4 + 4x^3 + x^2 - x - 32x4+4x3+x2−x−3