母音 a, i, u, e, o と子音 k, s, t の8個を1列に並べる。 (1) 両端が母音であるような並べ方は何通りあるか。 (2) 母音5個が続いて並ぶような並べ方は何通りあるか。

離散数学順列組み合わせ場合の数数え上げ
2025/5/17

1. 問題の内容

母音 a, i, u, e, o と子音 k, s, t の8個を1列に並べる。
(1) 両端が母音であるような並べ方は何通りあるか。
(2) 母音5個が続いて並ぶような並べ方は何通りあるか。

2. 解き方の手順

(1) 両端が母音の場合:
まず、両端に並べる母音の選び方を考える。5つの母音から2つを選ぶので、選び方は 5×4=205 \times 4 = 20 通りある。
次に、残りの6つの文字(3つの母音と3つの子音)を並べる。これは 6!=7206! = 720 通りある。
したがって、両端が母音である並べ方は 20×720=1440020 \times 720 = 14400 通り。
(2) 母音5個が続く場合:
まず、母音5個をひとまとめにして考える。このひとまとめの母音群と3つの子音を並べるので、並べ方は 4!=244! = 24 通り。
次に、母音5個の並べ方を考える。5つの母音の並べ方は 5!=1205! = 120 通り。
したがって、母音5個が続く並べ方は 24×120=288024 \times 120 = 2880 通り。

3. 最終的な答え

(1) 14400通り
(2) 2880通り

「離散数学」の関連問題

40人のクラスで、シャープペンシルを持っている人が33人、ボールペンを持っている人が28人、万年筆を持っている人が21人いる。誰も何も持っていない人はいなかったとき、以下の選択肢の中で確実に言えるもの...

集合包除原理ベン図
2025/8/4

与えられた論理式、すなわち「最終閉包式 (Ultimate Closure Equation) $(\Omega \cong \emptyset) \land (\Phi(F) \subset N)...

論理集合命題論理含意真理値
2025/8/4

与えられた論理回路について、以下の3つの問いに答える問題です。 1. 回路を表す論理式を示せ。

論理回路ブール代数論理式真理値表論理ゲート
2025/8/4

集合 $S = \{x | x \in \mathbb{N}, 0 < \sqrt{x} < 3\}$ について考える。 1. 関係 $R = \{(x, y) | x \in S, y \in S,...

集合関係同値関係商集合合成関係
2025/8/4

15以下の自然数の集合を全体集合Uとする。 3の倍数の集合をA、4の倍数の集合をBとする。 (1) $A \cap B$ (2) $A \cup B$ (3) $\overline{A}$ (4) $...

集合集合演算共通部分和集合補集合
2025/8/4

問題3は、与えられた集合AとBについて、共通部分 $A \cap B$ と和集合 $A \cup B$ を求める問題です。 問題4は、全体集合Uを15以下の自然数の集合とし、3の倍数の集合をBとすると...

集合共通部分和集合
2025/8/4

問題は以下の2点です。 1. $p \Rightarrow q$ と $\neg p \vee q$ が論理的に同値であることを示す。

論理命題論理論理的同値ド・モルガンの法則含意の除去
2025/8/4

与えられたグラフの最小全域木を求め、それを図示し、最小全域木の辺の重みの総和を計算する問題です。

グラフ理論最小全域木クラスカル法プリム法
2025/8/4

問題6について、全体集合$U$を15以下の自然数全体の集合とし、$U$の部分集合$A = \{1, 2, 4, 7, 8, 9, 12, 15\}$、$B = \{1, 4, 6, 7, 9\}$が与...

集合集合演算要素数補集合
2025/8/4

図のような道のある町で、点Aから点Bまでの最短経路の総数、点Qを通る最短経路の総数、点Pまたは点Qを通る最短経路の総数をそれぞれ求める問題です。

組み合わせ最短経路場合の数順列
2025/8/4