二次方程式 $x^2 - 5x - 4 = 0$ の解を求める問題です。

代数学二次方程式解の公式根号
2025/5/17

1. 問題の内容

二次方程式 x25x4=0x^2 - 5x - 4 = 0 の解を求める問題です。

2. 解き方の手順

二次方程式の解の公式を使って解きます。
二次方程式 ax2+bx+c=0ax^2 + bx + c = 0 の解は、
x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
で与えられます。
今回の問題では、a=1a=1, b=5b=-5, c=4c=-4 なので、解の公式に代入すると、
x=(5)±(5)24(1)(4)2(1)x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(-4)}}{2(1)}
x=5±25+162x = \frac{5 \pm \sqrt{25 + 16}}{2}
x=5±412x = \frac{5 \pm \sqrt{41}}{2}

3. 最終的な答え

x=5±412x = \frac{5 \pm \sqrt{41}}{2}

「代数学」の関連問題

ある生徒が以下の3つの問題を解いたが、間違っている箇所があるので、それを指摘し、正しく解き直す。 (1) $18ab \div 3a \times 2b$ (2) $6x^2y \div \frac{...

式の計算分数式文字式計算ミス
2025/5/17

$2a \times 3b = 6ab$ となる理由を、式の変形で使った計算法則とともに説明してください。

式の計算乗法結合法則交換法則文字式
2025/5/17

与えられた数式の空欄を埋めて、式が成り立つようにします。 数式は以下の通りです。 $6a + \boxed{①}b + \boxed{②}(a - 5b) = 12a - 6b$

方程式式の展開係数比較
2025/5/17

問題は、空欄を埋めて以下の式を成立させることです。 $6a + \boxed{①}b + \boxed{②}(a - 5b) = 12a - 6b$

方程式式の整理一次方程式
2025/5/17

次の式が成り立つように、空欄に数字や文字を入れなさい。 $6a + \boxed{①} b + \boxed{②} (a - 5b) = 12a - 6b$

一次方程式式の展開文字式
2025/5/17

関数 $y = f(x) = x^2 - (2a - 3)x - 2a - 2$ について、区間 $-2 \le x \le 3$ における最大値と最小値を、$a$ の値によって場合分けして求める問題...

二次関数最大値最小値場合分け平方完成
2025/5/17

$y$ は $x$ に反比例しており、$x=-2$ のとき $y=5$ である。このとき、$y$ を $x$ の式で表す問題を解く。

反比例比例定数関数
2025/5/17

与えられた式 $(x+2)(x+3)(x-2)(x-3)$ を展開して、最も簡単な形に整理する。

式の展開多項式因数分解
2025/5/17

$\frac{a-b}{2} + \frac{2a+b}{3}$ を計算し、できる限り簡略化してください。

分数式の計算文字式計算
2025/5/17

与えられた式 $(x+y)(x+y-z)$ を展開せよ。

式の展開多項式
2025/5/17