与えられた式 $(x + \frac{1}{3})^2$ を展開しなさい。

代数学展開二項の平方代数式
2025/5/18

1. 問題の内容

与えられた式 (x+13)2(x + \frac{1}{3})^2 を展開しなさい。

2. 解き方の手順

二項の平方の公式 (a+b)2=a2+2ab+b2(a+b)^2 = a^2 + 2ab + b^2 を利用して展開します。
この問題の場合、a=xa = xb=13b = \frac{1}{3} となります。
(x+13)2=x2+2x13+(13)2(x + \frac{1}{3})^2 = x^2 + 2 \cdot x \cdot \frac{1}{3} + (\frac{1}{3})^2
=x2+23x+19= x^2 + \frac{2}{3}x + \frac{1}{9}

3. 最終的な答え

x2+23x+19x^2 + \frac{2}{3}x + \frac{1}{9}

「代数学」の関連問題

(3) $x(x+1)(x+2) = 3 \cdot 4 \cdot 5$ を解く。 (4) $(x^2 - x)^2 - 8(x^2 - x) + 12 = 0$ を解く。

方程式三次方程式二次方程式因数分解解の公式複素数
2025/5/18

はい、承知いたしました。問題文を読み解き、指定された形式で回答します。

因数分解多項式二次式
2025/5/18

与えられた式 $a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+2abc$ を因数分解する。

因数分解対称式交代式多項式
2025/5/18

問題1は、二項係数の計算と二項定理の展開式を求める問題です。 問題2は、関数に関する用語の定義を記述する問題です。 問題3は、与えられた関数について、指定された $x$ の値に対する $f(x)$ の...

組み合わせ二項定理関数グラフ放物線双曲線
2025/5/18

$(6a - \frac{3}{2})^2$ を展開して計算する問題です。

展開二項の平方代数式
2025/5/18

$x = \frac{1}{1 + \sqrt{2} + \sqrt{3}}$、 $y = \frac{1}{1 + \sqrt{2} - \sqrt{3}}$ のとき、$\frac{1}{x+y}$...

式の計算有理化根号
2025/5/18

$x = \sqrt{3} + 2$ と $y = \sqrt{3} - 2$ が与えられたとき、$xy + 2x$ の値を求める。

式の計算平方根展開代入
2025/5/18

与えられた式 $(6a - \frac{2}{3})^2$ を展開して簡略化してください。

展開二項定理多項式
2025/5/18

$x = \sqrt{5} + \sqrt{2}$、$y = \sqrt{5} - \sqrt{2}$ のとき、以下の式の値をそれぞれ求めなさい。 (1) $xy$ (2) $x^2 - y^2$ (...

式の計算平方根展開因数分解
2025/5/18

与えられた式 $(6a - \frac{2}{3})^2$ を展開し、簡略化する問題です。

展開公式二乗計算
2025/5/18