与えられた式 $(x+y+1)(x+y-1)(x-y+1)(x-y-1)$ を展開して簡単にしてください。代数学式の展開因数分解多項式2025/5/181. 問題の内容与えられた式 (x+y+1)(x+y−1)(x−y+1)(x−y−1)(x+y+1)(x+y-1)(x-y+1)(x-y-1)(x+y+1)(x+y−1)(x−y+1)(x−y−1) を展開して簡単にしてください。2. 解き方の手順まず、(x+y+1)(x+y−1)(x+y+1)(x+y-1)(x+y+1)(x+y−1) と (x−y+1)(x−y−1)(x-y+1)(x-y-1)(x−y+1)(x−y−1) をそれぞれ計算します。(x+y+1)(x+y−1)(x+y+1)(x+y-1)(x+y+1)(x+y−1) について、 x+y=Ax+y = Ax+y=A とおくと、(A+1)(A−1)=A2−1(A+1)(A-1) = A^2 - 1(A+1)(A−1)=A2−1 となります。よって、(x+y+1)(x+y−1)=(x+y)2−1=x2+2xy+y2−1(x+y+1)(x+y-1) = (x+y)^2 - 1 = x^2 + 2xy + y^2 - 1(x+y+1)(x+y−1)=(x+y)2−1=x2+2xy+y2−1(x−y+1)(x−y−1)(x-y+1)(x-y-1)(x−y+1)(x−y−1) について、x−y=Bx-y = Bx−y=B とおくと、(B+1)(B−1)=B2−1(B+1)(B-1) = B^2 - 1(B+1)(B−1)=B2−1 となります。よって、(x−y+1)(x−y−1)=(x−y)2−1=x2−2xy+y2−1(x-y+1)(x-y-1) = (x-y)^2 - 1 = x^2 - 2xy + y^2 - 1(x−y+1)(x−y−1)=(x−y)2−1=x2−2xy+y2−1したがって、元の式は次のようになります。(x2+2xy+y2−1)(x2−2xy+y2−1)(x^2 + 2xy + y^2 - 1)(x^2 - 2xy + y^2 - 1)(x2+2xy+y2−1)(x2−2xy+y2−1)ここで、 x2+y2−1=Cx^2+y^2-1 = Cx2+y2−1=C とおくと、(C+2xy)(C−2xy)=C2−(2xy)2=C2−4x2y2(C+2xy)(C-2xy) = C^2 - (2xy)^2 = C^2 - 4x^2y^2(C+2xy)(C−2xy)=C2−(2xy)2=C2−4x2y2よって、(x2+2xy+y2−1)(x2−2xy+y2−1)=(x2+y2−1)2−4x2y2(x^2 + 2xy + y^2 - 1)(x^2 - 2xy + y^2 - 1) = (x^2 + y^2 - 1)^2 - 4x^2y^2(x2+2xy+y2−1)(x2−2xy+y2−1)=(x2+y2−1)2−4x2y2(x2+y2−1)2=(x2+y2)2−2(x2+y2)+1=x4+2x2y2+y4−2x2−2y2+1(x^2+y^2-1)^2 = (x^2+y^2)^2 - 2(x^2+y^2) + 1 = x^4 + 2x^2y^2 + y^4 - 2x^2 - 2y^2 + 1(x2+y2−1)2=(x2+y2)2−2(x2+y2)+1=x4+2x2y2+y4−2x2−2y2+1したがって、(x2+y2−1)2−4x2y2=x4+2x2y2+y4−2x2−2y2+1−4x2y2=x4−2x2y2+y4−2x2−2y2+1(x^2 + y^2 - 1)^2 - 4x^2y^2 = x^4 + 2x^2y^2 + y^4 - 2x^2 - 2y^2 + 1 - 4x^2y^2 = x^4 - 2x^2y^2 + y^4 - 2x^2 - 2y^2 + 1(x2+y2−1)2−4x2y2=x4+2x2y2+y4−2x2−2y2+1−4x2y2=x4−2x2y2+y4−2x2−2y2+1x4−2x2y2+y4=(x2−y2)2x^4 - 2x^2y^2 + y^4 = (x^2 - y^2)^2x4−2x2y2+y4=(x2−y2)2 なので、(x2−y2)2−2(x2+y2)+1(x^2 - y^2)^2 - 2(x^2 + y^2) + 1(x2−y2)2−2(x2+y2)+13. 最終的な答えx4−2x2y2+y4−2x2−2y2+1=(x2−y2)2−2(x2+y2)+1x^4 - 2x^2y^2 + y^4 - 2x^2 - 2y^2 + 1 = (x^2-y^2)^2 - 2(x^2+y^2) + 1x4−2x2y2+y4−2x2−2y2+1=(x2−y2)2−2(x2+y2)+1