与えられた9つの数式を計算し、最も簡単な形に整理します。代数学式の計算代数2025/5/181. 問題の内容与えられた9つの数式を計算し、最も簡単な形に整理します。2. 解き方の手順(1) a2b×b÷a=a2b2÷a=a2−1b2=ab2a^2b \times b \div a = a^2b^2 \div a = a^{2-1}b^2 = ab^2a2b×b÷a=a2b2÷a=a2−1b2=ab2(2) x2÷xy=x2xy=xyx^2 \div xy = \frac{x^2}{xy} = \frac{x}{y}x2÷xy=xyx2=yx(3) 4a×6b÷3a=24ab÷3a=24ab3a=8b4a \times 6b \div 3a = 24ab \div 3a = \frac{24ab}{3a} = 8b4a×6b÷3a=24ab÷3a=3a24ab=8b(4) 10x÷(−5x2)×2x3=10x−5x2×2x3=−2x×2x3=−4x210x \div (-5x^2) \times 2x^3 = \frac{10x}{-5x^2} \times 2x^3 = -\frac{2}{x} \times 2x^3 = -4x^210x÷(−5x2)×2x3=−5x210x×2x3=−x2×2x3=−4x2(5) 12a2b2÷(−2b)2=12a2b2÷4b2=12a2b24b2=3a212a^2b^2 \div (-2b)^2 = 12a^2b^2 \div 4b^2 = \frac{12a^2b^2}{4b^2} = 3a^212a2b2÷(−2b)2=12a2b2÷4b2=4b212a2b2=3a2(6) 6x2y÷92y÷(−43x)=6x2y×29y×(−34x)−1=6x2y×29y×(−3x4)=12x2y9y×(−3x4)=4x23×(−3x4)=−x36x^2y \div \frac{9}{2}y \div (-\frac{4}{3}x) = 6x^2y \times \frac{2}{9y} \times (-\frac{3}{4x})^{-1} = 6x^2y \times \frac{2}{9y} \times (-\frac{3x}{4}) = \frac{12x^2y}{9y} \times (-\frac{3x}{4}) = \frac{4x^2}{3} \times (-\frac{3x}{4}) = -x^36x2y÷29y÷(−34x)=6x2y×9y2×(−4x3)−1=6x2y×9y2×(−43x)=9y12x2y×(−43x)=34x2×(−43x)=−x3(7) (−2y)3×3x2y=(−8y3)×3x2y=−24x2y4(-2y)^3 \times 3x^2y = (-8y^3) \times 3x^2y = -24x^2y^4(−2y)3×3x2y=(−8y3)×3x2y=−24x2y4(8) −29x2÷x218=−29x2×18x2=−2×189=−4-\frac{2}{9}x^2 \div \frac{x^2}{18} = -\frac{2}{9}x^2 \times \frac{18}{x^2} = -\frac{2 \times 18}{9} = -4−92x2÷18x2=−92x2×x218=−92×18=−4(9) 14x2y2÷(−512xy2)=14x2y2×(−125xy2)=−12x2y220xy2=−3x5\frac{1}{4}x^2y^2 \div (-\frac{5}{12}xy^2) = \frac{1}{4}x^2y^2 \times (-\frac{12}{5xy^2}) = -\frac{12x^2y^2}{20xy^2} = -\frac{3x}{5}41x2y2÷(−125xy2)=41x2y2×(−5xy212)=−20xy212x2y2=−53x3. 最終的な答え(1) ab2ab^2ab2(2) xy\frac{x}{y}yx(3) 8b8b8b(4) −4x2-4x^2−4x2(5) 3a23a^23a2(6) −x3-x^3−x3(7) −24x2y4-24x^2y^4−24x2y4(8) −4-4−4(9) −3x5-\frac{3x}{5}−53x