次の式の値を求めます。 (1) $\cos^6\theta + \sin^6\theta + 3\cos^2\theta\sin^2\theta$代数学三角関数恒等式式の計算2025/5/19## 問題11. 問題の内容次の式の値を求めます。(1) cos6θ+sin6θ+3cos2θsin2θ\cos^6\theta + \sin^6\theta + 3\cos^2\theta\sin^2\thetacos6θ+sin6θ+3cos2θsin2θ2. 解き方の手順cos6θ+sin6θ\cos^6\theta + \sin^6\thetacos6θ+sin6θ を (cos2θ)3+(sin2θ)3(\cos^2\theta)^3 + (\sin^2\theta)^3(cos2θ)3+(sin2θ)3 と考え、和の3乗の因数分解の公式a3+b3=(a+b)(a2−ab+b2)a^3 + b^3 = (a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2−ab+b2)を利用します。a=cos2θa = \cos^2\thetaa=cos2θ、 b=sin2θb = \sin^2\thetab=sin2θ とすると、(cos2θ)3+(sin2θ)3=(cos2θ+sin2θ)((cos2θ)2−cos2θsin2θ+(sin2θ)2)(\cos^2\theta)^3 + (\sin^2\theta)^3 = (\cos^2\theta + \sin^2\theta)((\cos^2\theta)^2 - \cos^2\theta\sin^2\theta + (\sin^2\theta)^2)(cos2θ)3+(sin2θ)3=(cos2θ+sin2θ)((cos2θ)2−cos2θsin2θ+(sin2θ)2)cos2θ+sin2θ=1\cos^2\theta + \sin^2\theta = 1cos2θ+sin2θ=1 なので、(cos2θ)3+(sin2θ)3=cos4θ−cos2θsin2θ+sin4θ(\cos^2\theta)^3 + (\sin^2\theta)^3 = \cos^4\theta - \cos^2\theta\sin^2\theta + \sin^4\theta(cos2θ)3+(sin2θ)3=cos4θ−cos2θsin2θ+sin4θしたがって、与式はcos4θ−cos2θsin2θ+sin4θ+3cos2θsin2θ=cos4θ+2cos2θsin2θ+sin4θ\cos^4\theta - \cos^2\theta\sin^2\theta + \sin^4\theta + 3\cos^2\theta\sin^2\theta = \cos^4\theta + 2\cos^2\theta\sin^2\theta + \sin^4\thetacos4θ−cos2θsin2θ+sin4θ+3cos2θsin2θ=cos4θ+2cos2θsin2θ+sin4θこれは (cos2θ+sin2θ)2(\cos^2\theta + \sin^2\theta)^2(cos2θ+sin2θ)2 と変形できます。(cos2θ+sin2θ)2=12=1(\cos^2\theta + \sin^2\theta)^2 = 1^2 = 1(cos2θ+sin2θ)2=12=13. 最終的な答え1## 問題21. 問題の内容次の式の値を求めます。(2) sin(π2−θ)sin(π2+θ)−cos(θ−π2)cos(θ+π2)\sin(\frac{\pi}{2} - \theta)\sin(\frac{\pi}{2} + \theta) - \cos(\theta - \frac{\pi}{2})\cos(\theta + \frac{\pi}{2})sin(2π−θ)sin(2π+θ)−cos(θ−2π)cos(θ+2π)2. 解き方の手順sin(π2−θ)=cosθ\sin(\frac{\pi}{2} - \theta) = \cos\thetasin(2π−θ)=cosθsin(π2+θ)=cosθ\sin(\frac{\pi}{2} + \theta) = \cos\thetasin(2π+θ)=cosθcos(θ−π2)=cos(π2−θ)=sinθ\cos(\theta - \frac{\pi}{2}) = \cos(\frac{\pi}{2} - \theta) = \sin\thetacos(θ−2π)=cos(2π−θ)=sinθcos(θ+π2)=−sinθ\cos(\theta + \frac{\pi}{2}) = -\sin\thetacos(θ+2π)=−sinθこれらの関係式を用いると、与式はcosθcosθ−sinθ(−sinθ)=cos2θ+sin2θ=1\cos\theta \cos\theta - \sin\theta(-\sin\theta) = \cos^2\theta + \sin^2\theta = 1cosθcosθ−sinθ(−sinθ)=cos2θ+sin2θ=13. 最終的な答え1