定積分 $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cos{t}\cos{3t} dt$ を計算します。解析学定積分三角関数積和の公式2025/5/181. 問題の内容定積分 ∫π6π2costcos3tdt\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cos{t}\cos{3t} dt∫6π2πcostcos3tdt を計算します。2. 解き方の手順積和の公式を用いて、被積分関数を簡単な形に変形します。積和の公式は以下です。cosAcosB=12[cos(A+B)+cos(A−B)]\cos{A}\cos{B} = \frac{1}{2}[\cos{(A+B)} + \cos{(A-B)}]cosAcosB=21[cos(A+B)+cos(A−B)]これを用いると、costcos3t=12[cos(t+3t)+cos(t−3t)]=12[cos(4t)+cos(−2t)]=12[cos(4t)+cos(2t)]\cos{t}\cos{3t} = \frac{1}{2}[\cos{(t+3t)} + \cos{(t-3t)}] = \frac{1}{2}[\cos{(4t)} + \cos{(-2t)}] = \frac{1}{2}[\cos{(4t)} + \cos{(2t)}]costcos3t=21[cos(t+3t)+cos(t−3t)]=21[cos(4t)+cos(−2t)]=21[cos(4t)+cos(2t)]したがって、求める積分は∫π6π2costcos3tdt=∫π6π212[cos(4t)+cos(2t)]dt=12∫π6π2[cos(4t)+cos(2t)]dt\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cos{t}\cos{3t} dt = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{1}{2}[\cos{(4t)} + \cos{(2t)}] dt = \frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} [\cos{(4t)} + \cos{(2t)}] dt∫6π2πcostcos3tdt=∫6π2π21[cos(4t)+cos(2t)]dt=21∫6π2π[cos(4t)+cos(2t)]dt∫cos(at)dt=1asin(at)+C\int \cos(at) dt = \frac{1}{a} \sin(at) + C∫cos(at)dt=a1sin(at)+C を用いて、12∫π6π2[cos(4t)+cos(2t)]dt=12[14sin(4t)+12sin(2t)]π6π2\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} [\cos{(4t)} + \cos{(2t)}] dt = \frac{1}{2}[\frac{1}{4}\sin{(4t)} + \frac{1}{2}\sin{(2t)}]_{\frac{\pi}{6}}^{\frac{\pi}{2}}21∫6π2π[cos(4t)+cos(2t)]dt=21[41sin(4t)+21sin(2t)]6π2π=12[(14sin(2π)+12sin(π))−(14sin(2π3)+12sin(π3))]= \frac{1}{2}[(\frac{1}{4}\sin{(2\pi)} + \frac{1}{2}\sin{(\pi)}) - (\frac{1}{4}\sin{(\frac{2\pi}{3})} + \frac{1}{2}\sin{(\frac{\pi}{3})})]=21[(41sin(2π)+21sin(π))−(41sin(32π)+21sin(3π))]=12[(0+0)−(14⋅32+12⋅32)]=12[−(38+34)]=12[−338]=−3316= \frac{1}{2}[(0 + 0) - (\frac{1}{4} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} \cdot \frac{\sqrt{3}}{2})] = \frac{1}{2}[-(\frac{\sqrt{3}}{8} + \frac{\sqrt{3}}{4})] = \frac{1}{2}[-\frac{3\sqrt{3}}{8}] = -\frac{3\sqrt{3}}{16}=21[(0+0)−(41⋅23+21⋅23)]=21[−(83+43)]=21[−833]=−16333. 最終的な答え−3316-\frac{3\sqrt{3}}{16}−1633