与えられた8つの平方根に関する式を簡単にします。算数平方根計算2025/5/181. 問題の内容与えられた8つの平方根に関する式を簡単にします。2. 解き方の手順(1) 5⋅6\sqrt{5} \cdot \sqrt{6}5⋅6 5⋅6=5⋅6=30\sqrt{5} \cdot \sqrt{6} = \sqrt{5 \cdot 6} = \sqrt{30}5⋅6=5⋅6=30(2) 213\frac{\sqrt{21}}{\sqrt{3}}321 213=213=7\frac{\sqrt{21}}{\sqrt{3}} = \sqrt{\frac{21}{3}} = \sqrt{7}321=321=7(3) (−2)3(-\sqrt{2})^3(−2)3 (−2)3=(−2)⋅(−2)⋅(−2)=−22(-\sqrt{2})^3 = (-\sqrt{2}) \cdot (-\sqrt{2}) \cdot (-\sqrt{2}) = -2\sqrt{2}(−2)3=(−2)⋅(−2)⋅(−2)=−22(4) 43+75−124\sqrt{3} + \sqrt{75} - \sqrt{12}43+75−12 43+75−12=43+25⋅3−4⋅3=43+53−23=(4+5−2)3=734\sqrt{3} + \sqrt{75} - \sqrt{12} = 4\sqrt{3} + \sqrt{25 \cdot 3} - \sqrt{4 \cdot 3} = 4\sqrt{3} + 5\sqrt{3} - 2\sqrt{3} = (4+5-2)\sqrt{3} = 7\sqrt{3}43+75−12=43+25⋅3−4⋅3=43+53−23=(4+5−2)3=73(5) 5(2−20)\sqrt{5}(\sqrt{2} - \sqrt{20})5(2−20) 5(2−20)=52−520=10−100=10−10\sqrt{5}(\sqrt{2} - \sqrt{20}) = \sqrt{5}\sqrt{2} - \sqrt{5}\sqrt{20} = \sqrt{10} - \sqrt{100} = \sqrt{10} - 105(2−20)=52−520=10−100=10−10(6) (23+2)(3+32)(2\sqrt{3} + \sqrt{2})(\sqrt{3} + 3\sqrt{2})(23+2)(3+32) (23+2)(3+32)=233+632+23+322=2(3)+66+6+3(2)=6+76+6=12+76(2\sqrt{3} + \sqrt{2})(\sqrt{3} + 3\sqrt{2}) = 2\sqrt{3}\sqrt{3} + 6\sqrt{3}\sqrt{2} + \sqrt{2}\sqrt{3} + 3\sqrt{2}\sqrt{2} = 2(3) + 6\sqrt{6} + \sqrt{6} + 3(2) = 6 + 7\sqrt{6} + 6 = 12 + 7\sqrt{6}(23+2)(3+32)=233+632+23+322=2(3)+66+6+3(2)=6+76+6=12+76(7) (56−5)2(5\sqrt{6} - \sqrt{5})^2(56−5)2 (56−5)2=(56)2−2(56)(5)+(5)2=25(6)−1030+5=150−1030+5=155−1030(5\sqrt{6} - \sqrt{5})^2 = (5\sqrt{6})^2 - 2(5\sqrt{6})(\sqrt{5}) + (\sqrt{5})^2 = 25(6) - 10\sqrt{30} + 5 = 150 - 10\sqrt{30} + 5 = 155 - 10\sqrt{30}(56−5)2=(56)2−2(56)(5)+(5)2=25(6)−1030+5=150−1030+5=155−1030(8) (10+23)(10−23)(\sqrt{10} + 2\sqrt{3})(\sqrt{10} - 2\sqrt{3})(10+23)(10−23) (10+23)(10−23)=(10)2−(23)2=10−4(3)=10−12=−2(\sqrt{10} + 2\sqrt{3})(\sqrt{10} - 2\sqrt{3}) = (\sqrt{10})^2 - (2\sqrt{3})^2 = 10 - 4(3) = 10 - 12 = -2(10+23)(10−23)=(10)2−(23)2=10−4(3)=10−12=−23. 最終的な答え(1) 30\sqrt{30}30(2) 7\sqrt{7}7(3) −22-2\sqrt{2}−22(4) 737\sqrt{3}73(5) 10−10\sqrt{10} - 1010−10(6) 12+7612 + 7\sqrt{6}12+76(7) 155−1030155 - 10\sqrt{30}155−1030(8) −2-2−2