(1) 関数 $f(x) = x^2 + 2x - 4$ において、$f(0)$, $f(1)$, $f(2)$ を求める。 (2) 関数 $y = ax + b$ の定義域が $-2 \le x \le 4$ のとき、値域が $-10 \le y \le 8$ である。ただし、$a < 0$ とする。このとき、$a$, $b$ を求める。 (3) 2次関数 $y = 2x^2 - 4x - 1$ を平方完成する。

代数学二次関数関数の値一次関数定義域値域平方完成連立方程式
2025/3/23

1. 問題の内容

(1) 関数 f(x)=x2+2x4f(x) = x^2 + 2x - 4 において、f(0)f(0), f(1)f(1), f(2)f(2) を求める。
(2) 関数 y=ax+by = ax + b の定義域が 2x4-2 \le x \le 4 のとき、値域が 10y8-10 \le y \le 8 である。ただし、a<0a < 0 とする。このとき、aa, bb を求める。
(3) 2次関数 y=2x24x1y = 2x^2 - 4x - 1 を平方完成する。

2. 解き方の手順

(1)
f(0)f(0) を求める:f(x)=x2+2x4f(x) = x^2 + 2x - 4x=0x = 0 を代入する。
f(1)f(1) を求める:f(x)=x2+2x4f(x) = x^2 + 2x - 4x=1x = 1 を代入する。
f(2)f(2) を求める:f(x)=x2+2x4f(x) = x^2 + 2x - 4x=2x = 2 を代入する。
(2)
a<0a < 0 なので、xx が最大のとき yy は最小、xx が最小のとき yy は最大となる。
x=2x = -2 のとき y=8y = 8
x=4x = 4 のとき y=10y = -10
連立方程式を立てて解く。
8=2a+b8 = -2a + b
10=4a+b-10 = 4a + b
(3)
y=2x24x1y = 2x^2 - 4x - 1 を平方完成する。
y=2(x22x)1y = 2(x^2 - 2x) - 1
y=2((x1)21)1y = 2((x - 1)^2 - 1) - 1
y=2(x1)221y = 2(x - 1)^2 - 2 - 1
y=2(x1)23y = 2(x - 1)^2 - 3

3. 最終的な答え

(1)
f(0)=02+2(0)4=4f(0) = 0^2 + 2(0) - 4 = -4
f(1)=12+2(1)4=1+24=1f(1) = 1^2 + 2(1) - 4 = 1 + 2 - 4 = -1
f(2)=22+2(2)4=4+44=4f(2) = 2^2 + 2(2) - 4 = 4 + 4 - 4 = 4
(2)
8=2a+b8 = -2a + b
10=4a+b-10 = 4a + b
上の式から下の式を引くと
18=6a18 = -6a
a=3a = -3
8=2(3)+b8 = -2(-3) + b
8=6+b8 = 6 + b
b=2b = 2
(3)
y=2(x1)23y = 2(x - 1)^2 - 3
よって、
(1) f(0)=4f(0) = -4, f(1)=1f(1) = -1, f(2)=4f(2) = 4
(2) a=3a = -3, b=2b = 2
(3) y=2(x1)23y = 2(x - 1)^2 - 3

「代数学」の関連問題

正の奇数の列を、第 $n$ 群に $n$ 個の数が入るように群に分ける。 (1) $n \geq 2$ のとき、第 $n$ 群の最初の数を $n$ の式で表す。 (2) 第15群に入るすべての数の和 ...

数列等差数列群数列和の公式
2025/6/17

次の二次方程式を解く。 (1) $x^2 - 2x - 15 = 0$ (2) $3x^2 + 4x - 4 = 0$ (3) $4x^2 - 12x + 9 = 0$ (4) $3x = x^2$

二次方程式因数分解解の公式
2025/6/17

2次不等式 $2ax^2 + 2bx + 1 \le 0$ の解が $x \le -\frac{1}{2}, 3 \le x$ となるような $a, b$ の値を求める。

二次不等式解と係数の関係二次関数
2025/6/17

関数 $y = x^2 - 2ax$ (定義域: $0 \le x \le 3$) の最小値とそのときの $x$ の値を求めよ。また、この関数の最大値とそのときの $x$ の値を求めよ。

二次関数最大値最小値場合分け定義域
2025/6/17

$a$ を正の定数とするとき、関数 $y = 2x^2 - 2x$ ($0 \le x \le a$) の最大値を求め、そのときの $x$ の値を求めよ。また、この関数の最小値を求め、そのときの $x...

二次関数最大値最小値平方完成定義域
2025/6/17

行列 $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 3 & 1 \\ 2 & 5 & 2 \end{pmatrix}$ を簡約化する基本行列 $P_1, P_2, \do...

線形代数行列基本行列行基本変形簡約化
2025/6/17

$\frac{\pi}{12} = \frac{\pi}{4} - \frac{\pi}{6}$ であることを用いて、$\tan \frac{\pi}{12}$ の値を求めよ。

三角関数tan加法定理式の計算有理化
2025/6/17

与えられた条件を満たす一次関数 $f(x) = ax + b$ の係数 $a$ と $b$ の値を求める問題です。与えられた条件は以下の4つです。 (1) $f(1) = -2$, $f(3) = 4...

一次関数連立方程式係数
2025/6/17

加法定理を用いて、$\tan 105^\circ$ の値を求めよ。

三角関数加法定理tan有理化
2025/6/17

2つの2次不等式 $2x^2+x-3>0$ と $x^2-(a+2)x+2a<0$ が与えられています。 (1) 不等式 $x^2-(a+2)x+2a<0$ を解く。 (2) 2つの不等式を同時に満た...

二次不等式因数分解不等式の解整数解
2025/6/17