与えられた式 $S = \frac{1}{2}(a+b)h$ を $a$ について解く問題です。つまり、$a = $ の形に変形します。

代数学式の変形文字式の計算方程式
2025/5/19

1. 問題の内容

与えられた式 S=12(a+b)hS = \frac{1}{2}(a+b)haa について解く問題です。つまり、a=a = の形に変形します。

2. 解き方の手順

まず、与えられた式は
S=12(a+b)hS = \frac{1}{2}(a+b)h
です。
両辺に2をかけます。
2S=(a+b)h2S = (a+b)h
両辺を hh で割ります。
2Sh=a+b\frac{2S}{h} = a+b
両辺から bb を引きます。
2Shb=a\frac{2S}{h} - b = a
したがって、aa について解くと、
a=2Shba = \frac{2S}{h} - b
となります。

3. 最終的な答え

a=2Shba = \frac{2S}{h} - b

「代数学」の関連問題

数列 $\{a_n\}$ が与えられており、初期値 $a_1 = \frac{1}{7}$ と漸化式 $a_{n+1} = \frac{a_n - 2}{a_n + 4}$ が与えられています。また、...

数列漸化式数学的帰納法
2025/5/19

与えられた漸化式と数列の初期値から、$a_n$の一般項を求める問題です。 具体的には、$a_1 = \frac{1}{7}$と$a_{n+1} = \frac{a_n - 2}{a_n + 4}$が与...

数列漸化式一般項分数式
2025/5/19

与えられた式 $(x-1)(x-3)(x-5)(x-7)+15$ を簡単にします。

因数分解多項式式の展開
2025/5/19

問題は、数列 $\{a_n\}$ に関する漸化式が与えられており、その式は $\frac{a_{n+2}}{a_{n+1}} = \frac{5}{4} \left( \frac{3}{2} \rig...

数列漸化式数列の比
2025/5/19

$(a+b)^6$ を展開したとき、項は何個できるかを求める問題です。

二項定理展開組み合わせ
2025/5/19

全体集合 $U$ と、その部分集合 $A, B$ について、 $n(U)=60, n(A)=40, n(B)=25$ である。 このとき、$n(A \cap B)$ のとりうる値の最大値と最小値を求め...

集合集合の要素数最大値最小値
2025/5/19

次の式の値を求めます。 (1) $\cos^6\theta + \sin^6\theta + 3\cos^2\theta\sin^2\theta$

三角関数恒等式式の計算
2025/5/19

$x+y = -4$、$xy = -5$ のとき、$x^2+xy+y^2$ の値を求めよ。

代数式の計算二次式式の値
2025/5/19

与えられた2次方程式 $6x^2 + 13x + 6 = 0$ を解く問題です。

二次方程式因数分解解の公式
2025/5/19

与えられた式 $m(a-b) - a + b$ を因数分解してください。

因数分解式の変形共通因数
2025/5/19