2次方程式 $mx^2 - 4mx - 2m + 4 = 0$ が重解を持つような定数 $m$ の値を求め、そのときの重解を求める。ただし、$m \neq 0$ とする。
2025/5/19
1. 問題の内容
2次方程式 が重解を持つような定数 の値を求め、そのときの重解を求める。ただし、 とする。
2. 解き方の手順
2次方程式が重解を持つための条件は、判別式 が となることです。
まず、与えられた2次方程式の判別式を計算します。
重解を持つためには である必要があるので、
または
または
ただし、 という条件があるので、 のみが条件を満たします。
のとき、2次方程式は
3. 最終的な答え
のとき、重解は である。