関数 $f(x) = \frac{\cos x - a}{\sin x}$ ($0 < x < \pi$) が $x = \frac{\pi}{4}$ で極値をとるとき、定数 $a$ の値を求め、またそのときの極値を求めよ。解析学微分極値三角関数関数の最大・最小2025/5/191. 問題の内容関数 f(x)=cosx−asinxf(x) = \frac{\cos x - a}{\sin x}f(x)=sinxcosx−a (0<x<π0 < x < \pi0<x<π) が x=π4x = \frac{\pi}{4}x=4π で極値をとるとき、定数 aaa の値を求め、またそのときの極値を求めよ。2. 解き方の手順f(x)f(x)f(x) が x=π4x = \frac{\pi}{4}x=4π で極値をとるので、f′(π4)=0f'(\frac{\pi}{4}) = 0f′(4π)=0 となる。まず、f(x)f(x)f(x) を微分する。f′(x)=(−sinx)(sinx)−(cosx−a)(cosx)sin2xf'(x) = \frac{(-\sin x)(\sin x) - (\cos x - a)(\cos x)}{\sin^2 x}f′(x)=sin2x(−sinx)(sinx)−(cosx−a)(cosx)f′(x)=−sin2x−cos2x+acosxsin2xf'(x) = \frac{-\sin^2 x - \cos^2 x + a \cos x}{\sin^2 x}f′(x)=sin2x−sin2x−cos2x+acosxf′(x)=−1+acosxsin2xf'(x) = \frac{-1 + a \cos x}{\sin^2 x}f′(x)=sin2x−1+acosxf′(π4)=0f'(\frac{\pi}{4}) = 0f′(4π)=0 より、0=−1+acos(π4)sin2(π4)0 = \frac{-1 + a \cos(\frac{\pi}{4})}{\sin^2 (\frac{\pi}{4})}0=sin2(4π)−1+acos(4π)−1+acos(π4)=0-1 + a \cos(\frac{\pi}{4}) = 0−1+acos(4π)=0acos(π4)=1a \cos(\frac{\pi}{4}) = 1acos(4π)=1a⋅22=1a \cdot \frac{\sqrt{2}}{2} = 1a⋅22=1a=22=2a = \frac{2}{\sqrt{2}} = \sqrt{2}a=22=2次に、x=π4x = \frac{\pi}{4}x=4π での極値を求める。f(π4)=cos(π4)−asin(π4)f(\frac{\pi}{4}) = \frac{\cos(\frac{\pi}{4}) - a}{\sin(\frac{\pi}{4})}f(4π)=sin(4π)cos(4π)−af(π4)=22−222f(\frac{\pi}{4}) = \frac{\frac{\sqrt{2}}{2} - \sqrt{2}}{\frac{\sqrt{2}}{2}}f(4π)=2222−2f(π4)=22−22222f(\frac{\pi}{4}) = \frac{\frac{\sqrt{2}}{2} - \frac{2\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}f(4π)=2222−222f(π4)=−2222=−1f(\frac{\pi}{4}) = \frac{-\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = -1f(4π)=22−22=−13. 最終的な答えa=2a = \sqrt{2}a=2極値: −1-1−1