$\sum_{k=1}^{n} (\sum_{i=1}^{k} i)$ を $n$ を用いて表す。代数学シグマ数列和の公式等差数列2025/5/191. 問題の内容∑k=1n(∑i=1ki)\sum_{k=1}^{n} (\sum_{i=1}^{k} i)∑k=1n(∑i=1ki) を nnn を用いて表す。2. 解き方の手順まず、内側の ∑\sum∑ を計算します。∑i=1ki\sum_{i=1}^{k} i∑i=1ki は、初項1、末項k、項数kの等差数列の和なので、公式より、∑i=1ki=k(k+1)2\sum_{i=1}^{k} i = \frac{k(k+1)}{2}∑i=1ki=2k(k+1)次に、外側の ∑\sum∑ に代入します。∑k=1n(∑i=1ki)=∑k=1nk(k+1)2=12∑k=1n(k2+k)\sum_{k=1}^{n} (\sum_{i=1}^{k} i) = \sum_{k=1}^{n} \frac{k(k+1)}{2} = \frac{1}{2} \sum_{k=1}^{n} (k^2 + k)∑k=1n(∑i=1ki)=∑k=1n2k(k+1)=21∑k=1n(k2+k)∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)よって、12∑k=1n(k2+k)=12(∑k=1nk2+∑k=1nk)=12(n(n+1)(2n+1)6+n(n+1)2)\frac{1}{2} \sum_{k=1}^{n} (k^2 + k) = \frac{1}{2} (\sum_{k=1}^{n} k^2 + \sum_{k=1}^{n} k) = \frac{1}{2} (\frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2})21∑k=1n(k2+k)=21(∑k=1nk2+∑k=1nk)=21(6n(n+1)(2n+1)+2n(n+1))=12(n(n+1)(2n+1)+3n(n+1)6)=112n(n+1)(2n+1+3)=112n(n+1)(2n+4)=16n(n+1)(n+2)= \frac{1}{2} (\frac{n(n+1)(2n+1) + 3n(n+1)}{6}) = \frac{1}{12}n(n+1)(2n+1+3) = \frac{1}{12}n(n+1)(2n+4) = \frac{1}{6}n(n+1)(n+2)=21(6n(n+1)(2n+1)+3n(n+1))=121n(n+1)(2n+1+3)=121n(n+1)(2n+4)=61n(n+1)(n+2)3. 最終的な答えn(n+1)(n+2)6\frac{n(n+1)(n+2)}{6}6n(n+1)(n+2)