$\sum_{k=1}^{n} (4k - 5)$ を計算する。

代数学シグマ数列和の計算
2025/5/19

1. 問題の内容

k=1n(4k5)\sum_{k=1}^{n} (4k - 5) を計算する。

2. 解き方の手順

シグマの性質を利用して、和を分解する。
k=1n(4k5)=k=1n4kk=1n5\sum_{k=1}^{n} (4k - 5) = \sum_{k=1}^{n} 4k - \sum_{k=1}^{n} 5
定数をシグマの外に出す。
k=1n4k=4k=1nk\sum_{k=1}^{n} 4k = 4\sum_{k=1}^{n} k
k=1n5=5k=1n1=5n\sum_{k=1}^{n} 5 = 5\sum_{k=1}^{n} 1 = 5n
k=1nk\sum_{k=1}^{n} k を計算する。これは1からnまでの自然数の和であり、n(n+1)2\frac{n(n+1)}{2} で表される。
よって、
k=1n(4k5)=4k=1nkk=1n5=4n(n+1)25n=2n(n+1)5n=2n2+2n5n=2n23n\sum_{k=1}^{n} (4k - 5) = 4\sum_{k=1}^{n} k - \sum_{k=1}^{n} 5 = 4\frac{n(n+1)}{2} - 5n = 2n(n+1) - 5n = 2n^2 + 2n - 5n = 2n^2 - 3n

3. 最終的な答え

2n23n2n^2 - 3n

「代数学」の関連問題

(3) $(a+b)(2+a)(2+b) + 2ab$ を因数分解する。 (4) $a^2(b-c) + b^2(c-a) + c^2(a-b)$ を因数分解する。

因数分解多項式
2025/5/19

与えられた式を因数分解する問題です。今回は、問題 (2) $x^3(y-z) + y^3(z-x) + z^3(x-y)$ を解きます。

因数分解多項式交代式
2025/5/19

与えられた3つの式をそれぞれ簡単にします。 (1) $(\sqrt{3} + \sqrt{5} + \sqrt{7})(\sqrt{3} + \sqrt{5} - \sqrt{7})(\sqrt{3}...

式の計算根号式の展開有理化
2025/5/19

問題は以下の2つです。 (1) $(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$ を展開せよ。 (2) 上記の結果を用いて $8x^3+27y^3+18xy-1$ を因数分解せよ。

展開因数分解多項式
2025/5/19

問題は、$x^3 + \frac{1}{x^3}$ の値を求める問題です。ただし、与えられた条件は $x + \frac{1}{x} = 5$ です。

式の展開代数式の計算因数分解多項式
2025/5/19

連続する3つの奇数がある。最も小さい数と真ん中の数の積は、真ん中の数と最も大きい数の積より108小さい。この3つの奇数の和の3倍の数を求めよ。

方程式整数代数
2025/5/19

次の式を簡単にせよ。 (1) $\sqrt{7+4\sqrt{3}}$ (2) $\sqrt{28-12\sqrt{5}}$

根号式の計算
2025/5/19

問題は二つあります。 一つ目は $\frac{1}{\sqrt{3} + \sqrt{5}}$ の分母を有理化することです。 二つ目は $\frac{1}{1 + \sqrt{3}} + \frac{...

分母の有理化式の計算平方根
2025/5/19

$x$ が指定された範囲にあるとき、$\sqrt{x^2-4x+4} - \sqrt{x^2+2x+1}$ を簡単にせよ。 (1) $x>2$ (2) $-1<x<2$

絶対値式の計算場合分け
2025/5/19

以下の4つの式を因数分解する問題です。 (1) $x^2+3xy+2y^2+2x+5y-3$ (2) $(x-1)(x-3)(x-5)(x-7)+15$ (3) $x^4-8x^2-9$ (4) $x...

因数分解多項式二次方程式四次方程式
2025/5/19