The problem requires us to find the arc length of the curve defined by the parametric equations $x = t - 3$ and $y = \sqrt{2t}$, where $0 \le t \le 8$.

AnalysisArc LengthParametric EquationsCalculusIntegration
2025/3/24

1. Problem Description

The problem requires us to find the arc length of the curve defined by the parametric equations x=t3x = t - 3 and y=2ty = \sqrt{2t}, where 0t80 \le t \le 8.

2. Solution Steps

The formula for the arc length of a parametric curve defined by x=f(t)x = f(t) and y=g(t)y = g(t) from t=at = a to t=bt = b is given by:
L=ab(dxdt)2+(dydt)2dtL = \int_{a}^{b} \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt
First, we need to find the derivatives of xx and yy with respect to tt.
dxdt=d(t3)dt=1\frac{dx}{dt} = \frac{d(t-3)}{dt} = 1
dydt=d(2t)dt=d((2t)1/2)dt=12(2t)1/22=12t\frac{dy}{dt} = \frac{d(\sqrt{2t})}{dt} = \frac{d((2t)^{1/2})}{dt} = \frac{1}{2}(2t)^{-1/2} \cdot 2 = \frac{1}{\sqrt{2t}}
Now, we substitute these derivatives into the arc length formula:
L=08(1)2+(12t)2dtL = \int_{0}^{8} \sqrt{(1)^2 + (\frac{1}{\sqrt{2t}})^2} dt
L=081+12tdtL = \int_{0}^{8} \sqrt{1 + \frac{1}{2t}} dt
L=082t+12tdtL = \int_{0}^{8} \sqrt{\frac{2t+1}{2t}} dt
Let u=2t+1u = 2t+1. Then du=2dtdu = 2 dt, so dt=12dudt = \frac{1}{2} du. Also, t=u12t = \frac{u-1}{2}.
Then 2t+12t=uu1\sqrt{\frac{2t+1}{2t}} = \sqrt{\frac{u}{u-1}}. This substitution does not seem to simplify the integral.
Instead, let's try to manipulate the integrand directly.
L=081+12tdt=082t+12tdtL = \int_{0}^{8} \sqrt{1 + \frac{1}{2t}} dt = \int_{0}^{8} \sqrt{\frac{2t+1}{2t}} dt
This integral does not have a simple closed-form solution using elementary functions. The question may have an error. However, assuming the given function is right, the arc length integral is
L=081+12tdtL = \int_0^8 \sqrt{1 + \frac{1}{2t}} \, dt.
Let u=2t+1u = \sqrt{2t+1}, then u2=2t+1u^2 = 2t+1, 2t=u212t = u^2 - 1, t=u212t = \frac{u^2-1}{2} and dt=ududt = u du.
The limits of integration are 2(0)+1=1\sqrt{2(0)+1} = 1 and 2(8)+1=17\sqrt{2(8)+1} = \sqrt{17}.
Then 1+12t=1+1u21=u21+1u21=u2u21=uu21\sqrt{1 + \frac{1}{2t}} = \sqrt{1 + \frac{1}{u^2-1}} = \sqrt{\frac{u^2-1+1}{u^2-1}} = \sqrt{\frac{u^2}{u^2-1}} = \frac{u}{\sqrt{u^2-1}}.
The integral becomes L=117uu21udu=117u2u21duL = \int_1^{\sqrt{17}} \frac{u}{\sqrt{u^2-1}} u \, du = \int_1^{\sqrt{17}} \frac{u^2}{\sqrt{u^2-1}} \, du.
Let u=secθu = \sec \theta. Then du=secθtanθdθdu = \sec \theta \tan \theta \, d\theta and u21=tanθ\sqrt{u^2 - 1} = \tan \theta.
Then u2u21du=sec2θtanθsecθtanθdθ=sec3θdθ\int \frac{u^2}{\sqrt{u^2 - 1}} \, du = \int \frac{\sec^2 \theta}{\tan \theta} \sec \theta \tan \theta \, d\theta = \int \sec^3 \theta \, d\theta.
sec3θdθ=12(secθtanθ+lnsecθ+tanθ)\int \sec^3 \theta \, d\theta = \frac{1}{2} (\sec \theta \tan \theta + \ln |\sec \theta + \tan \theta|).
For u=1u=1, secθ=1\sec \theta = 1, θ=0\theta = 0.
For u=17u = \sqrt{17}, secθ=17\sec \theta = \sqrt{17}, tanθ=16=4\tan \theta = \sqrt{16} = 4.
Then L=12(174+ln17+4)12(10+ln1+0)=217+12ln(4+17)0L = \frac{1}{2} (\sqrt{17} \cdot 4 + \ln|\sqrt{17} + 4|) - \frac{1}{2}(1 \cdot 0 + \ln |1+0|) = 2\sqrt{17} + \frac{1}{2} \ln (4 + \sqrt{17}) - 0.
Therefore, L=217+12ln(4+17)L = 2\sqrt{17} + \frac{1}{2} \ln (4 + \sqrt{17}).

3. Final Answer

217+12ln(4+17)2\sqrt{17} + \frac{1}{2}\ln(4 + \sqrt{17})

Related problems in "Analysis"

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1

The problem asks us to evaluate the integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$.

IntegrationDefinite IntegralSubstitutionTrigonometric Substitution
2025/4/1

We are asked to evaluate the definite integral $\int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \fr...

Definite IntegralIntegrationTrigonometric SubstitutionInverse Trigonometric Functions
2025/4/1

We are asked to find the derivative of the function $f(x) = (x+2)^x$ using logarithmic differentiati...

DifferentiationLogarithmic DifferentiationChain RuleProduct RuleDerivatives
2025/4/1

We need to evaluate the integral $\int \frac{e^x}{e^{3x}-8} dx$.

IntegrationCalculusPartial FractionsTrigonometric Substitution
2025/4/1

We are asked to evaluate the integral: $\int \frac{e^{2x}}{e^{3x}-8} dx$

IntegrationCalculusSubstitutionPartial FractionsTrigonometric Substitution
2025/4/1