以下の三角関数の値を求める問題です。 (1) $\sin \frac{16}{3}\pi$ (2) $\cos \frac{7}{2}\pi$ (3) $\tan (-\frac{11}{6}\pi)$解析学三角関数sincostan角度変換2025/5/191. 問題の内容以下の三角関数の値を求める問題です。(1) sin163π\sin \frac{16}{3}\pisin316π(2) cos72π\cos \frac{7}{2}\picos27π(3) tan(−116π)\tan (-\frac{11}{6}\pi)tan(−611π)2. 解き方の手順(1) sin163π\sin \frac{16}{3}\pisin316π163π=5π+13π=4π+π+13π\frac{16}{3}\pi = 5\pi + \frac{1}{3}\pi = 4\pi + \pi + \frac{1}{3}\pi316π=5π+31π=4π+π+31πsin163π=sin(π+13π)=−sin13π=−sin60∘=−32\sin \frac{16}{3}\pi = \sin (\pi + \frac{1}{3}\pi) = -\sin \frac{1}{3}\pi = -\sin 60^{\circ} = -\frac{\sqrt{3}}{2}sin316π=sin(π+31π)=−sin31π=−sin60∘=−23(2) cos72π\cos \frac{7}{2}\picos27π72π=3π+12π=2π+π+12π\frac{7}{2}\pi = 3\pi + \frac{1}{2}\pi = 2\pi + \pi + \frac{1}{2}\pi27π=3π+21π=2π+π+21πcos72π=cos(π+12π)=−cos12π=−cos90∘=0\cos \frac{7}{2}\pi = \cos (\pi + \frac{1}{2}\pi) = -\cos \frac{1}{2}\pi = -\cos 90^{\circ} = 0cos27π=cos(π+21π)=−cos21π=−cos90∘=0(3) tan(−116π)\tan (-\frac{11}{6}\pi)tan(−611π)−116π=−2π+16π-\frac{11}{6}\pi = -2\pi + \frac{1}{6}\pi−611π=−2π+61πtan(−116π)=tan(16π)=tan30∘=13=33\tan (-\frac{11}{6}\pi) = \tan (\frac{1}{6}\pi) = \tan 30^{\circ} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}tan(−611π)=tan(61π)=tan30∘=31=333. 最終的な答え(1) −32-\frac{\sqrt{3}}{2}−23(2) 000(3) 33\frac{\sqrt{3}}{3}33