ある委員会のメンバー構成は、P課の社員が5人、Q課の社員が3人、R課の社員が2人である。この中から3人をくじ引きで選ぶとき、3人ともP課の社員になる確率を求める問題です。

確率論・統計学確率組み合わせ場合の数
2025/3/24

1. 問題の内容

ある委員会のメンバー構成は、P課の社員が5人、Q課の社員が3人、R課の社員が2人である。この中から3人をくじ引きで選ぶとき、3人ともP課の社員になる確率を求める問題です。

2. 解き方の手順

まず、委員会メンバーの総数を求めます。
5+3+2=105 + 3 + 2 = 10
委員会メンバーは合計10人です。
次に、10人の中から3人を選ぶ組み合わせの総数を求めます。これは組み合わせの公式 nCr=n!r!(nr)!_nC_r = \frac{n!}{r!(n-r)!} を用いて計算します。この場合、n=10n=10r=3r=3なので、
10C3=10!3!7!=10×9×83×2×1=10×3×4=120_{10}C_3 = \frac{10!}{3!7!} = \frac{10 \times 9 \times 8}{3 \times 2 \times 1} = 10 \times 3 \times 4 = 120
したがって、3人の選び方は120通りです。
次に、3人ともP課の社員である選び方を求めます。P課の社員は5人なので、この中から3人を選ぶ組み合わせは、5C3_5C_3で計算できます。
5C3=5!3!2!=5×42×1=10_5C_3 = \frac{5!}{3!2!} = \frac{5 \times 4}{2 \times 1} = 10
したがって、3人ともP課の社員である選び方は10通りです。
求める確率は、3人ともP課の社員である選び方の数を、3人の選び方総数で割ったものです。
10120=112\frac{10}{120} = \frac{1}{12}

3. 最終的な答え

1 / 12

「確率論・統計学」の関連問題

2つのサイコロを投げたとき、小さい方の目の数をXとします。ただし、2つのサイコロの目が等しいときは、その目の数をXとします。 (a) 小さい方の目の数が2である確率 $P(X=2)$ を求めます。 (...

確率期待値サイコロ確率分布
2025/5/23

1から6までの目が出るサイコロを2つ同時に投げたとき、出た目の積が5の倍数になる確率を求める問題です。

確率サイコロ場合の数
2025/5/23

確率変数Xの確率密度関数が与えられており、(a)期待値E(X)と(b)分散V(X)を求める問題です。確率密度関数は、 $f(x) = \begin{cases} -\frac{3}{4}x^2 + \...

確率密度関数期待値分散積分
2025/5/23

1から6までの目がそれぞれ1/6の確率で出るサイコロを60回投げたとき、奇数の目が出る回数をXとします。 (a) 期待値 $E(X)$ を求めます。 (b) 分散 $V(X)$ を求めます。

期待値分散ベルヌーイ試行確率
2025/5/23

確率変数 $X$ の確率密度関数 $f(x)$ が与えられています。 $ f(x) = \begin{cases} -\frac{3}{4}x^2 + \frac{3}{2}x & (0 \le x ...

確率密度関数期待値分散積分
2025/5/23

確率変数 $X$ の確率密度関数 $f(x)$ が次のように与えられている。 $f(x) = \begin{cases} -\frac{3}{4}x^2 + \frac{3}{2}x & (0 \le...

確率密度関数期待値積分
2025/5/23

確率変数 $X$ の確率密度関数 $f(x)$ が与えられており、以下のようになっています。 $ f(x) = \begin{cases} -\frac{3}{4}x^2 + \frac{3}{2}x...

確率密度関数期待値分散積分
2025/5/23

問題は、1から6までの目がそれぞれ$\frac{1}{6}$の確率で出るサイコロを60回投げたとき、奇数の目が出る回数を$X$とする。 (a) 期待値$E(X)$を求める。 (b) 分散$V(X)$を...

確率期待値分散二項分布
2025/5/23

6枚のカードがあり、表には1から6の整数が書かれ、裏にはそれぞれ表の数から7を引いた数が書かれています。サイコロを投げ、4以下の目ならカードの表の数を点数とし、5以上の目なら裏の数を点数とします。この...

確率事象サイコロ確率計算
2025/5/23

150人の学生を対象に、通学時の電車とバスの利用状況を調査した結果、電車利用者は111人、バス利用者は96人、両方利用者は69人だった。 このとき、表の空欄(ア~ケ)に当てはまる数字と、電車とバスを両...

集合ベン図統計
2025/5/23