与えられた式 $(x^2+xy+y^2)(x^2+y^2)(x-y)^2(x+y)$ を展開せよ。代数学式の展開多項式因数分解2025/5/201. 問題の内容与えられた式 (x2+xy+y2)(x2+y2)(x−y)2(x+y)(x^2+xy+y^2)(x^2+y^2)(x-y)^2(x+y)(x2+xy+y2)(x2+y2)(x−y)2(x+y) を展開せよ。2. 解き方の手順まず、(x−y)2(x+y)(x-y)^2(x+y)(x−y)2(x+y) の部分を展開します。(x−y)2=(x−y)(x−y)=x2−2xy+y2(x-y)^2 = (x-y)(x-y) = x^2 - 2xy + y^2(x−y)2=(x−y)(x−y)=x2−2xy+y2(x−y)2(x+y)=(x2−2xy+y2)(x+y)=x3+x2y−2x2y−2xy2+xy2+y3=x3−x2y−xy2+y3(x-y)^2(x+y) = (x^2 - 2xy + y^2)(x+y) = x^3 + x^2y - 2x^2y - 2xy^2 + xy^2 + y^3 = x^3 - x^2y - xy^2 + y^3(x−y)2(x+y)=(x2−2xy+y2)(x+y)=x3+x2y−2x2y−2xy2+xy2+y3=x3−x2y−xy2+y3次に、(x2+xy+y2)(x−y)(x2+y2)(x+y)(x−y)(x^2+xy+y^2)(x-y)(x^2+y^2)(x+y)(x-y)(x2+xy+y2)(x−y)(x2+y2)(x+y)(x−y)(x−y)(x+y)=x2−y2(x-y)(x+y)= x^2 -y^2(x−y)(x+y)=x2−y2 を使うx3−y3=(x−y)(x2+xy+y2)x^3-y^3 = (x-y)(x^2+xy+y^2)x3−y3=(x−y)(x2+xy+y2)を用いると(x2+xy+y2)(x−y)=x3−y3(x^2+xy+y^2)(x-y) = x^3 - y^3(x2+xy+y2)(x−y)=x3−y3したがって、与式は(x3−y3)(x2+y2)(x+y)(x−y)=(x3−y3)(x2+y2)(x2−y2)(x^3-y^3)(x^2+y^2)(x+y)(x-y) = (x^3-y^3)(x^2+y^2)(x^2-y^2)(x3−y3)(x2+y2)(x+y)(x−y)=(x3−y3)(x2+y2)(x2−y2)となります。次に、(x3−y3)(x2+y2)(x^3-y^3)(x^2+y^2)(x3−y3)(x2+y2) を展開します。(x3−y3)(x2+y2)=x5+x3y2−x2y3−y5(x^3-y^3)(x^2+y^2) = x^5 + x^3y^2 - x^2y^3 - y^5(x3−y3)(x2+y2)=x5+x3y2−x2y3−y5したがって、与式は(x5+x3y2−x2y3−y5)(x2−y2)=x7−x5y2+x5y2−x3y4−x4y3+x2y5−x2y5+y7=x7−x4y3−x3y4+y7(x^5 + x^3y^2 - x^2y^3 - y^5)(x^2-y^2) = x^7 - x^5y^2 + x^5y^2 - x^3y^4 - x^4y^3 + x^2y^5 - x^2y^5 + y^7 = x^7 - x^4y^3 - x^3y^4 + y^7(x5+x3y2−x2y3−y5)(x2−y2)=x7−x5y2+x5y2−x3y4−x4y3+x2y5−x2y5+y7=x7−x4y3−x3y4+y7与式 =(x3−y3)(x2+y2)(x2−y2)=(x3−y3)(x4−y4)=x7−x3y4−x4y3+y7= (x^3-y^3)(x^2+y^2)(x^2-y^2) = (x^3-y^3)(x^4-y^4) = x^7 - x^3y^4 -x^4y^3 + y^7=(x3−y3)(x2+y2)(x2−y2)=(x3−y3)(x4−y4)=x7−x3y4−x4y3+y7したがってx7−x4y3−x3y4+y7x^7 - x^4y^3 - x^3y^4 + y^7x7−x4y3−x3y4+y73. 最終的な答えx7−x4y3−x3y4+y7x^7 - x^4y^3 - x^3y^4 + y^7x7−x4y3−x3y4+y7