次の式の値を求めよ。 $\sin(-\theta)\cos(\pi+\theta) - \cos(-\theta)\sin(\pi-\theta)$解析学三角関数三角関数の性質加法定理2025/5/211. 問題の内容次の式の値を求めよ。sin(−θ)cos(π+θ)−cos(−θ)sin(π−θ)\sin(-\theta)\cos(\pi+\theta) - \cos(-\theta)\sin(\pi-\theta)sin(−θ)cos(π+θ)−cos(−θ)sin(π−θ)2. 解き方の手順まず、三角関数の性質を利用して式を簡単にします。* sin(−θ)=−sin(θ)\sin(-\theta) = -\sin(\theta)sin(−θ)=−sin(θ)* cos(−θ)=cos(θ)\cos(-\theta) = \cos(\theta)cos(−θ)=cos(θ)* cos(π+θ)=−cos(θ)\cos(\pi + \theta) = -\cos(\theta)cos(π+θ)=−cos(θ)* sin(π−θ)=sin(θ)\sin(\pi - \theta) = \sin(\theta)sin(π−θ)=sin(θ)これらの性質を元の式に代入すると、次のようになります。(−sin(θ))(−cos(θ))−cos(θ)sin(θ)(-\sin(\theta))(-\cos(\theta)) - \cos(\theta)\sin(\theta)(−sin(θ))(−cos(θ))−cos(θ)sin(θ)=sin(θ)cos(θ)−cos(θ)sin(θ)=\sin(\theta)\cos(\theta) - \cos(\theta)\sin(\theta)=sin(θ)cos(θ)−cos(θ)sin(θ)=0= 0=03. 最終的な答え0