The problem consists of four questions related to Calculus. 1. a) Determine all the roots of three given equations. b) Given a function $g(x)$, find its inverse $g^{-1}(x)$, and show that $(g \circ g^{-1})(x) = x$.

AnalysisCalculusDerivativesInverse FunctionsTrigonometric IdentitiesDomain and RangeTrigonometric Equations
2025/3/24

1. Problem Description

The problem consists of four questions related to Calculus.

1. a) Determine all the roots of three given equations.

b) Given a function g(x)g(x), find its inverse g1(x)g^{-1}(x), and show that (gg1)(x)=x(g \circ g^{-1})(x) = x.

2. a) Find the range and domain of two given functions.

b) Show two trigonometric identities.

3. a) Find all solutions to two trigonometric equations.

b) Determine whether two given functions are odd, even, or neither.

4. a) Find the derivative $\frac{dy}{dx}$ for two given functions.

b) Find the derivative g(x)g'(x) of a given function g(x)g(x).
c) Given y=arctan(1x)y = \arctan(\frac{1}{x}), find dydx\frac{dy}{dx}.

5. Solution Steps

1. a)

(i) 7+15e13x=10    15e13x=3    e13x=315=157 + 15e^{1-3x} = 10 \implies 15e^{1-3x} = 3 \implies e^{1-3x} = \frac{3}{15} = \frac{1}{5}.
13x=ln(15)=ln(5)    3x=1+ln(5)    x=1+ln(5)31-3x = \ln(\frac{1}{5}) = -\ln(5) \implies 3x = 1 + \ln(5) \implies x = \frac{1 + \ln(5)}{3}.
(ii) f(x)=x5x432x3=0    x3(x2x32)=0f(x) = x^5 - x^4 - 32x^3 = 0 \implies x^3(x^2 - x - 32) = 0. So x=0x=0 is a triple root.
x2x32=0    x=1±1+4(32)2=1±1292x^2 - x - 32 = 0 \implies x = \frac{1 \pm \sqrt{1 + 4(32)}}{2} = \frac{1 \pm \sqrt{129}}{2}.
So the roots are x=0x = 0 (multiplicity 3), x=1+1292x = \frac{1 + \sqrt{129}}{2}, and x=11292x = \frac{1 - \sqrt{129}}{2}.
(iii) xxe3x+2=0    x(1e3x+2)=0x - xe^{3x+2} = 0 \implies x(1 - e^{3x+2}) = 0. So x=0x=0 is a root.
1e3x+2=0    e3x+2=1    3x+2=ln(1)=0    3x=2    x=231 - e^{3x+2} = 0 \implies e^{3x+2} = 1 \implies 3x+2 = \ln(1) = 0 \implies 3x = -2 \implies x = -\frac{2}{3}.
The roots are x=0x = 0 and x=23x = -\frac{2}{3}.
b) g(x)=x3g(x) = \sqrt{x-3}. To find the inverse, let y=x3y = \sqrt{x-3}. Then y2=x3    x=y2+3y^2 = x-3 \implies x = y^2 + 3.
So g1(x)=x2+3g^{-1}(x) = x^2 + 3, where x0x \geq 0 since the range of gg is [0,)[0, \infty).
(gg1)(x)=g(g1(x))=g(x2+3)=(x2+3)3=x2=x=x(g \circ g^{-1})(x) = g(g^{-1}(x)) = g(x^2 + 3) = \sqrt{(x^2+3) - 3} = \sqrt{x^2} = |x| = x since x0x \geq 0.

2. a)

(i) f(z)=z6z3f(z) = \frac{|z| - 6}{|z| - 3}.
For the domain, z30    z3    z3|z| - 3 \neq 0 \implies |z| \neq 3 \implies z \neq 3 and z3z \neq -3. Domain: zR{3,3}z \in \mathbb{R} \setminus \{-3, 3\}.
If z<3|z| < 3, f(z)=z6z3>0f(z) = \frac{|z|-6}{|z|-3} > 0. If z>6|z| > 6, f(z)>0f(z) > 0. If 3<z<63 < |z| < 6, f(z)<0f(z) < 0.
f(z)=z33z3=13z3f(z) = \frac{|z|-3-3}{|z|-3} = 1 - \frac{3}{|z|-3}. As zz \to \infty, f(z)1f(z) \to 1.
If z=0|z| = 0, f(z)=63=2f(z) = \frac{-6}{-3} = 2. As z3|z| \to 3^{-}, f(z)f(z) \to \infty. As z3+|z| \to 3^{+}, f(z)f(z) \to -\infty.
If z=6|z| = 6, f(z)=0f(z) = 0. The range is (,0](1,)(-\infty, 0] \cup (1, \infty).
(ii) f(z)=2+z2+1f(z) = 2 + \sqrt{z^2+1}. Since z2+11z^2+1 \geq 1, z2+11\sqrt{z^2+1} \geq 1. So f(z)3f(z) \geq 3.
The domain is all real numbers. The range is [3,)[3, \infty).
b)
(i) 1+tan2θ=sec2θ1 + \tan^2\theta = \sec^2\theta is a standard trigonometric identity.
(ii) tan(α+β)=sin(α+β)cos(α+β)=sinαcosβ+cosαsinβcosαcosβsinαsinβ\tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} = \frac{\sin\alpha\cos\beta + \cos\alpha\sin\beta}{\cos\alpha\cos\beta - \sin\alpha\sin\beta}.
Divide numerator and denominator by cosαcosβ\cos\alpha\cos\beta:
tan(α+β)=sinαcosβcosαcosβ+cosαsinβcosαcosβcosαcosβcosαcosβsinαsinβcosαcosβ=tanα+tanβ1tanαtanβ\tan(\alpha + \beta) = \frac{\frac{\sin\alpha\cos\beta}{\cos\alpha\cos\beta} + \frac{\cos\alpha\sin\beta}{\cos\alpha\cos\beta}}{\frac{\cos\alpha\cos\beta}{\cos\alpha\cos\beta} - \frac{\sin\alpha\sin\beta}{\cos\alpha\cos\beta}} = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha\tan\beta}.

6. a)

(i) sin(2θ)=tanθ    2sinθcosθ=sinθcosθ    2sinθcos2θ=sinθ\sin(2\theta) = \tan\theta \implies 2\sin\theta\cos\theta = \frac{\sin\theta}{\cos\theta} \implies 2\sin\theta\cos^2\theta = \sin\theta.
sinθ(2cos2θ1)=0    sinθcos(2θ)=0\sin\theta(2\cos^2\theta - 1) = 0 \implies \sin\theta\cos(2\theta) = 0.
sinθ=0    θ=nπ\sin\theta = 0 \implies \theta = n\pi, nZn \in \mathbb{Z}.
cos(2θ)=0    2θ=π2+nπ    θ=π4+nπ2=(2n+1)π4\cos(2\theta) = 0 \implies 2\theta = \frac{\pi}{2} + n\pi \implies \theta = \frac{\pi}{4} + \frac{n\pi}{2} = \frac{(2n+1)\pi}{4}, nZn \in \mathbb{Z}.
(ii) 4sin2(3t)3sin(3t)=1    4sin2(3t)3sin(3t)1=04\sin^2(3t) - 3\sin(3t) = 1 \implies 4\sin^2(3t) - 3\sin(3t) - 1 = 0.
(4sin(3t)+1)(sin(3t)1)=0(4\sin(3t) + 1)(\sin(3t) - 1) = 0.
sin(3t)=1    3t=π2+2nπ    t=π6+2nπ3\sin(3t) = 1 \implies 3t = \frac{\pi}{2} + 2n\pi \implies t = \frac{\pi}{6} + \frac{2n\pi}{3}, nZn \in \mathbb{Z}.
sin(3t)=14    3t=arcsin(14)+2nπ\sin(3t) = -\frac{1}{4} \implies 3t = \arcsin(-\frac{1}{4}) + 2n\pi or 3t=πarcsin(14)+2nπ3t = \pi - \arcsin(-\frac{1}{4}) + 2n\pi.
t=13arcsin(14)+2nπ3t = \frac{1}{3}\arcsin(-\frac{1}{4}) + \frac{2n\pi}{3} or t=π313arcsin(14)+2nπ3t = \frac{\pi}{3} - \frac{1}{3}\arcsin(-\frac{1}{4}) + \frac{2n\pi}{3}, nZn \in \mathbb{Z}.
b)
(i) g(x)=x+2g(x) = -|x| + 2. g(x)=x+2=x+2=g(x)g(-x) = -|-x| + 2 = -|x| + 2 = g(x). So g(x)g(x) is even.
(ii) f(x)=x2x4x=x2x(x31)=xx31f(x) = \frac{x^2}{x^4 - x} = \frac{x^2}{x(x^3 - 1)} = \frac{x}{x^3 - 1}.
f(x)=x(x)31=xx31=xx3+1f(-x) = \frac{-x}{(-x)^3 - 1} = \frac{-x}{-x^3 - 1} = \frac{x}{x^3 + 1}.
Since f(x)f(x)f(-x) \neq f(x) and f(x)f(x)f(-x) \neq -f(x), f(x)f(x) is neither even nor odd.

7. a)

(i) y=sin2(4x)+sec(x)y = \sin^2(4x) + \sec(x).
dydx=2sin(4x)cos(4x)(4)+sec(x)tan(x)=8sin(4x)cos(4x)+sec(x)tan(x)=4sin(8x)+sec(x)tan(x)\frac{dy}{dx} = 2\sin(4x)\cos(4x)(4) + \sec(x)\tan(x) = 8\sin(4x)\cos(4x) + \sec(x)\tan(x) = 4\sin(8x) + \sec(x)\tan(x).
(ii) y=cos(2x21)y = \cos(2x^2 - 1).
dydx=sin(2x21)(4x)=4xsin(2x21)\frac{dy}{dx} = -\sin(2x^2 - 1)(4x) = -4x\sin(2x^2 - 1).
b) g(x)=(x+3)2(2x2+1)3g(x) = (x+3)^2(2x^2+1)^3.
g(x)=2(x+3)(2x2+1)3+(x+3)2(3(2x2+1)2(4x))=2(x+3)(2x2+1)3+12x(x+3)2(2x2+1)2g'(x) = 2(x+3)(2x^2+1)^3 + (x+3)^2(3(2x^2+1)^2(4x)) = 2(x+3)(2x^2+1)^3 + 12x(x+3)^2(2x^2+1)^2.
g(x)=2(x+3)(2x2+1)2[(2x2+1)+6x(x+3)]=2(x+3)(2x2+1)2[2x2+1+6x2+18x]=2(x+3)(2x2+1)2[8x2+18x+1]g'(x) = 2(x+3)(2x^2+1)^2[(2x^2+1) + 6x(x+3)] = 2(x+3)(2x^2+1)^2[2x^2+1+6x^2+18x] = 2(x+3)(2x^2+1)^2[8x^2+18x+1].
c) y=arctan(1x)y = \arctan(\frac{1}{x}).
dydx=11+(1x)2(1x2)=11+1x2(1x2)=1x2+1x2(1x2)=x2x2+1(1x2)=1x2+1\frac{dy}{dx} = \frac{1}{1 + (\frac{1}{x})^2} \cdot (-\frac{1}{x^2}) = \frac{1}{1 + \frac{1}{x^2}} \cdot (-\frac{1}{x^2}) = \frac{1}{\frac{x^2+1}{x^2}} \cdot (-\frac{1}{x^2}) = \frac{x^2}{x^2+1} \cdot (-\frac{1}{x^2}) = -\frac{1}{x^2+1}.

8. Final Answer

1. a) (i) $x = \frac{1 + \ln(5)}{3}$

(ii) x=0x = 0 (multiplicity 3), x=1+1292x = \frac{1 + \sqrt{129}}{2}, x=11292x = \frac{1 - \sqrt{129}}{2}
(iii) x=0x = 0, x=23x = -\frac{2}{3}
b) g1(x)=x2+3g^{-1}(x) = x^2 + 3, x0x \geq 0. (gg1)(x)=x(g \circ g^{-1})(x) = x.

2. a) (i) Domain: $z \in \mathbb{R} \setminus \{-3, 3\}$. Range: $(-\infty, 0] \cup (1, \infty)$.

(ii) Domain: zRz \in \mathbb{R}. Range: [3,)[3, \infty).
b) (i) 1+tan2θ=sec2θ1 + \tan^2\theta = \sec^2\theta (standard identity)
(ii) tan(α+β)=tanα+tanβ1tanαtanβ\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha\tan\beta}

3. a) (i) $\theta = n\pi$, $\theta = \frac{(2n+1)\pi}{4}$, $n \in \mathbb{Z}$

(ii) t=π6+2nπ3t = \frac{\pi}{6} + \frac{2n\pi}{3}, t=13arcsin(14)+2nπ3t = \frac{1}{3}\arcsin(-\frac{1}{4}) + \frac{2n\pi}{3}, t=π313arcsin(14)+2nπ3t = \frac{\pi}{3} - \frac{1}{3}\arcsin(-\frac{1}{4}) + \frac{2n\pi}{3}, nZn \in \mathbb{Z}
b) (i) Even
(ii) Neither

4. a) (i) $\frac{dy}{dx} = 4\sin(8x) + \sec(x)\tan(x)$

(ii) dydx=4xsin(2x21)\frac{dy}{dx} = -4x\sin(2x^2 - 1)
b) g(x)=2(x+3)(2x2+1)2[8x2+18x+1]g'(x) = 2(x+3)(2x^2+1)^2[8x^2+18x+1]
c) dydx=1x2+1\frac{dy}{dx} = -\frac{1}{x^2+1}

Related problems in "Analysis"

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1

The problem asks us to evaluate the integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$.

IntegrationDefinite IntegralSubstitutionTrigonometric Substitution
2025/4/1

We are asked to evaluate the definite integral $\int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \fr...

Definite IntegralIntegrationTrigonometric SubstitutionInverse Trigonometric Functions
2025/4/1

We are asked to find the derivative of the function $f(x) = (x+2)^x$ using logarithmic differentiati...

DifferentiationLogarithmic DifferentiationChain RuleProduct RuleDerivatives
2025/4/1

We need to evaluate the integral $\int \frac{e^x}{e^{3x}-8} dx$.

IntegrationCalculusPartial FractionsTrigonometric Substitution
2025/4/1

We are asked to evaluate the integral: $\int \frac{e^{2x}}{e^{3x}-8} dx$

IntegrationCalculusSubstitutionPartial FractionsTrigonometric Substitution
2025/4/1