与えられた二次方程式 $x^2 - 4x = 6$ を解く。

代数学二次方程式解の公式平方根
2025/3/24

1. 問題の内容

与えられた二次方程式 x24x=6x^2 - 4x = 6 を解く。

2. 解き方の手順

まず、二次方程式を標準形に変形する。
x24x6=0x^2 - 4x - 6 = 0
次に、解の公式を用いる。二次方程式 ax2+bx+c=0ax^2 + bx + c = 0 の解は、
x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
この問題では、a=1a = 1, b=4b = -4, c=6c = -6 である。これを解の公式に代入すると、
x=(4)±(4)24(1)(6)2(1)x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(-6)}}{2(1)}
x=4±16+242x = \frac{4 \pm \sqrt{16 + 24}}{2}
x=4±402x = \frac{4 \pm \sqrt{40}}{2}
x=4±2102x = \frac{4 \pm 2\sqrt{10}}{2}
x=2±10x = 2 \pm \sqrt{10}

3. 最終的な答え

x=2+10x = 2 + \sqrt{10} または x=210x = 2 - \sqrt{10}

「代数学」の関連問題

定数 $m$ について、連立不等式 $\begin{cases} x^2 - 3mx + 2m^2 < 0 \\ 2x^2 - (m-4)x - 2m < 0 \end{cases}$ の整数解がただ...

連立不等式二次不等式不等式の解整数解数式処理
2025/5/14

問題は「虚数の定義は何ですか?」と尋ねています。

虚数複素数実数複素平面
2025/5/14

「虚数は $a + bi$ ($i$ は虚数単位、$a$, $b$ は実数) と表わしますか」という質問です。

複素数虚数実数複素数の表現
2025/5/14

画像には「虚数とはなんですか」と書かれています。この質問に答える必要があります。

複素数虚数複素数平面
2025/5/14

複素数 $z$ が虚数であるとき、$z_1 = z + \sqrt{2} + \sqrt{2}i$ で定義される複素数 $z_1$ が描く図形が、中心 $\sqrt{2} + \sqrt{2}i$、半...

複素数複素平面絶対値図形
2025/5/14

$a$ を実数とする。2次方程式 $x^2+2ax+(a-1)=0$ の解を $\alpha, \beta$ とする。 (1) $\alpha$ と $\beta$ は異なる実数であることを示せ。 (...

二次方程式解の存在解と係数の関係判別式二次関数の最小値
2025/5/14

行列 $A = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$ と $P = \begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pm...

行列逆行列対称行列交代行列
2025/5/14

画像に書かれた以下の4つの問題を解きます。 (1) $98^2$ (2) $68^2 - 32^2$ (3) $47 \times 53$ (4) $x = 78$, $y = 38$ のとき、$x^...

計算展開因数分解公式二乗代入
2025/5/14

与えられた二つの不等式が成立することを証明し、等号が成り立つ場合の条件を求めます。 (1) $2(x^2+1) \geq (x+1)^2$ (2) $2(x^2+y^2) \geq (x+y)^2$

不等式証明二乗因数分解等号成立条件
2025/5/14

次の不等式を証明し、等号が成り立つ条件を求めよ。 (2) $2(x^2 + y^2) \geq (x+y)^2$

不等式証明平方完成等号成立条件
2025/5/14