2次方程式 $3x^2 - 6x + 2 = 0$ を解く問題です。

代数学二次方程式解の公式平方根
2025/3/24

1. 問題の内容

2次方程式 3x26x+2=03x^2 - 6x + 2 = 0 を解く問題です。

2. 解き方の手順

この2次方程式は因数分解できないため、解の公式を用います。2次方程式 ax2+bx+c=0ax^2 + bx + c = 0 の解は、解の公式
x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
で与えられます。
この問題では、a=3a = 3, b=6b = -6, c=2c = 2 です。これらの値を解の公式に代入すると、
x=(6)±(6)243223x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 3 \cdot 2}}{2 \cdot 3}
x=6±36246x = \frac{6 \pm \sqrt{36 - 24}}{6}
x=6±126x = \frac{6 \pm \sqrt{12}}{6}
12\sqrt{12} を簡単にすると、 12=43=23\sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3} です。したがって、
x=6±236x = \frac{6 \pm 2\sqrt{3}}{6}
x=3±33x = \frac{3 \pm \sqrt{3}}{3}

3. 最終的な答え

x=3+33x = \frac{3 + \sqrt{3}}{3} または x=333x = \frac{3 - \sqrt{3}}{3}

「代数学」の関連問題

実数 $x$ と実数の定数 $a$ が与えられている。集合 $A$ を $A = \{x | a \le x \le a+1\}$、集合 $B$ を $B = \{x | x < -3, 2 < x\...

集合不等式共通部分区間
2025/6/26

式 $x^2 - y^2 - 2x + 1$ を因数分解してください。

因数分解多項式式の展開
2025/6/26

与えられた8つの2次方程式をそれぞれ解きます。 (1) $9x^2 = 16$ (2) $(x+1)^2 = 3$ (3) $2x^2 - 5x + 3 = 0$ (4) $(\sqrt{2x} - ...

二次方程式解の公式因数分解平方根
2025/6/26

$x^2 - 2x + 1$ を因数分解する。

因数分解二次式多項式
2025/6/26

与えられた関数のグラフを描き、その値域を求める問題です。関数は3つあり、それぞれ定義域が指定されています。 (1) $y = x - 1$ ($x \geq 2$) (2) $y = -2x + 1$...

関数グラフ値域一次関数
2025/6/26

次の計算をせよ。 $4\log_{\sqrt{2}}2 + \frac{1}{2}\log_8 4 - \frac{3}{2}\log_8 8$

対数指数計算
2025/6/26

与えられた対数の計算問題を解きます。具体的には、以下の4つの問題を解きます。 (1) $\log_{6}12 + \log_{6}3$ (2) $\log_{10}25 + \log_{10}4$ (...

対数対数の計算対数の性質
2025/6/26

問題226:$M = a^p$の形で表された関係を、$log_aM = p$の形で表す。 問題227:$log_aM = p$の形で表された関係を、$M = a^p$の形で表す。

対数指数指数法則
2025/6/26

$\log_6 \sqrt[3]{6}$ の値を求めます。

対数指数対数の性質計算
2025/6/26

与えられた対数の値を計算し、簡単にしてください。 (1) $\log_6 36$ (2) $\log_4 64$ (3) $\log_8 \frac{1}{8}$ (4) $\log_{10} \fr...

対数指数
2025/6/26