$x^2 - 9xy + 18y^2$ を因数分解し、選択肢の中から正しい答えを選びます。

代数学因数分解多項式
2025/5/21

1. 問題の内容

x29xy+18y2x^2 - 9xy + 18y^2 を因数分解し、選択肢の中から正しい答えを選びます。

2. 解き方の手順

因数分解は、まず x2x^2 の係数と y2y^2 の係数の積を考えます。今回は、1×18=181 \times 18 = 18 です。
次に、積が18になり、和が-9になる2つの数を見つけます。
その2つの数は、-3と-6です。なぜなら、(3)×(6)=18(-3) \times (-6) = 18 であり、 (3)+(6)=9(-3) + (-6) = -9 となるからです。
したがって、x29xy+18y2x^2 - 9xy + 18y^2(x3y)(x6y)(x-3y)(x-6y) と因数分解できます。

3. 最終的な答え

(x3y)(x6y)(x-3y)(x-6y)

「代数学」の関連問題

与えられた2次対称行列 $A = \begin{pmatrix} 0 & 4 \\ 4 & 6 \end{pmatrix}$ を直交行列を用いて対角化する。

線形代数行列固有値固有ベクトル対角化直交行列
2025/5/22

与えられた式 $\frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}+1}$ を計算し、できるだけ簡単な形で表す問題です。

式の計算有理化平方根
2025/5/22

4次の正方行列 $A = [a_{ij}]$ の行列式 $|A|$ において、与えられた各項の係数につける符号を求める問題です。 (1) $a_{13}a_{22}a_{34}a_{41}$ (2) ...

行列式置換符号互換
2025/5/22

与えられた連立一次方程式を解く問題です。 $ \begin{cases} x_1 - 6x_2 + 3x_3 = 0 \\ 2x_1 + 4x_2 - x_3 = 0 \\ 5x_1 + 2x_2 -...

連立一次方程式線形代数掃き出し法行列
2025/5/22

与えられた4つの式を因数分解する問題です。 (1) $x^2 - (a+b)x - 2(a+b)^2$ (2) $(x-y)^2 - 4(x-y)z + 4z^2$ (3) $(x-y)(x-y+7)...

因数分解二次式展開式の計算
2025/5/21

2次正方行列 $A$ による一次変換 $f_A$ によって、点 $(1,0)$ が $(1,3)$ に、点 $(0,1)$ が $(2,5)$ に移されるとき、以下の問題を解く。 (1) 行列 $A$...

線形代数行列一次変換逆行列行列式
2025/5/21

2次正方行列 $A$ による一次変換 $f_A: \mathbb{R}^2 \to \mathbb{R}^2$ によって、xy平面上の点 $(1, 0)$ が $(1, 3)$ に、点 $(0, 1)...

線形代数行列一次変換逆行列
2025/5/21

問題46の(3)を解きます。与えられた式は $(x-y)(x-y+7) + 10$ です。この式を因数分解します。

因数分解式の展開変数変換
2025/5/21

与えられた2変数多項式 $6x^2 - 7xy - 3y^2 + 17x + 2y + 5$ を因数分解せよ。

多項式因数分解2変数多項式
2025/5/21

$\frac{\pi}{2} < \alpha < \pi$ かつ $\sin \alpha = \frac{2}{3}$ のとき、$\sin 2\alpha$ と $\cos 2\alpha$ の値...

三角関数加法定理倍角の公式三角比
2025/5/21