与えられた数列の和を求める問題です。数列は $1+3, 1+3+9, 1+3+9+27, \dots$ と続いています。この数列の一般項を求め、その和を計算します。問題文の最後に「の和」とあるので、数列の和の公式を求める必要があります。項数は示されていません。

代数学数列等比数列一般項等比数列の和
2025/5/21

1. 問題の内容

与えられた数列の和を求める問題です。数列は 1+3,1+3+9,1+3+9+27,1+3, 1+3+9, 1+3+9+27, \dots と続いています。この数列の一般項を求め、その和を計算します。問題文の最後に「の和」とあるので、数列の和の公式を求める必要があります。項数は示されていません。

2. 解き方の手順

まず、数列の一般項を求めます。数列の第 nn 項は、初項1、公比3の等比数列の第1項から第 nn 項までの和で表されます。等比数列の和の公式を用いると、
Sn=a(rn1)r1S_n = \frac{a(r^n - 1)}{r - 1}
ここで、a=1a=1, r=3r=3 なので、第 nn 項は
Sn=1(3n1)31=3n12S_n = \frac{1(3^n - 1)}{3 - 1} = \frac{3^n - 1}{2}
したがって、数列の一般項 ana_nan=3n12a_n = \frac{3^n - 1}{2} です。
問題文からは、項数が不明なので、和の公式は求められません。

3. 最終的な答え

数列の一般項は an=3n12a_n = \frac{3^n - 1}{2}

「代数学」の関連問題

与えられた関数の逆関数を求める問題です。 (1) $y = x - 3$ (2) $y = \log_3 x$

逆関数関数指数関数対数関数
2025/5/22

与えられた2次対称行列 $A = \begin{pmatrix} 0 & 4 \\ 4 & 6 \end{pmatrix}$ を直交行列を用いて対角化する。

線形代数行列固有値固有ベクトル対角化直交行列
2025/5/22

与えられた式 $\frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}+1}$ を計算し、できるだけ簡単な形で表す問題です。

式の計算有理化平方根
2025/5/22

4次の正方行列 $A = [a_{ij}]$ の行列式 $|A|$ において、与えられた各項の係数につける符号を求める問題です。 (1) $a_{13}a_{22}a_{34}a_{41}$ (2) ...

行列式置換符号互換
2025/5/22

与えられた連立一次方程式を解く問題です。 $ \begin{cases} x_1 - 6x_2 + 3x_3 = 0 \\ 2x_1 + 4x_2 - x_3 = 0 \\ 5x_1 + 2x_2 -...

連立一次方程式線形代数掃き出し法行列
2025/5/22

与えられた4つの式を因数分解する問題です。 (1) $x^2 - (a+b)x - 2(a+b)^2$ (2) $(x-y)^2 - 4(x-y)z + 4z^2$ (3) $(x-y)(x-y+7)...

因数分解二次式展開式の計算
2025/5/21

2次正方行列 $A$ による一次変換 $f_A$ によって、点 $(1,0)$ が $(1,3)$ に、点 $(0,1)$ が $(2,5)$ に移されるとき、以下の問題を解く。 (1) 行列 $A$...

線形代数行列一次変換逆行列行列式
2025/5/21

2次正方行列 $A$ による一次変換 $f_A: \mathbb{R}^2 \to \mathbb{R}^2$ によって、xy平面上の点 $(1, 0)$ が $(1, 3)$ に、点 $(0, 1)...

線形代数行列一次変換逆行列
2025/5/21

問題46の(3)を解きます。与えられた式は $(x-y)(x-y+7) + 10$ です。この式を因数分解します。

因数分解式の展開変数変換
2025/5/21

与えられた2変数多項式 $6x^2 - 7xy - 3y^2 + 17x + 2y + 5$ を因数分解せよ。

多項式因数分解2変数多項式
2025/5/21