定積分 $\int_{1}^{4} \sqrt{x} \log(x^2) dx$ を計算する。解析学定積分対数関数部分積分2025/5/211. 問題の内容定積分 ∫14xlog(x2)dx\int_{1}^{4} \sqrt{x} \log(x^2) dx∫14xlog(x2)dx を計算する。2. 解き方の手順まず、対数の性質を利用して、積分を簡略化します。log(x2)=2log(x)\log(x^2) = 2 \log(x)log(x2)=2log(x)であるから、∫14xlog(x2)dx=∫14x(2log(x))dx=2∫14xlog(x)dx\int_{1}^{4} \sqrt{x} \log(x^2) dx = \int_{1}^{4} \sqrt{x} (2 \log(x)) dx = 2 \int_{1}^{4} \sqrt{x} \log(x) dx∫14xlog(x2)dx=∫14x(2log(x))dx=2∫14xlog(x)dx部分積分を用いて、積分を計算します。u=log(x)u = \log(x)u=log(x), dv=xdxdv = \sqrt{x} dxdv=xdx とすると、du=1xdxdu = \frac{1}{x} dxdu=x1dx, v=∫xdx=∫x12dx=23x32v = \int \sqrt{x} dx = \int x^{\frac{1}{2}} dx = \frac{2}{3} x^{\frac{3}{2}}v=∫xdx=∫x21dx=32x23 となります。部分積分の公式は ∫udv=uv−∫vdu\int u dv = uv - \int v du∫udv=uv−∫vdu ですから、2∫14xlog(x)dx=2[23x32log(x)]14−2∫1423x32⋅1xdx2 \int_{1}^{4} \sqrt{x} \log(x) dx = 2 \left[ \frac{2}{3} x^{\frac{3}{2}} \log(x) \right]_{1}^{4} - 2 \int_{1}^{4} \frac{2}{3} x^{\frac{3}{2}} \cdot \frac{1}{x} dx2∫14xlog(x)dx=2[32x23log(x)]14−2∫1432x23⋅x1dx=2[23x32log(x)]14−43∫14x12dx= 2 \left[ \frac{2}{3} x^{\frac{3}{2}} \log(x) \right]_{1}^{4} - \frac{4}{3} \int_{1}^{4} x^{\frac{1}{2}} dx=2[32x23log(x)]14−34∫14x21dx=2[23x32log(x)]14−43[23x32]14= 2 \left[ \frac{2}{3} x^{\frac{3}{2}} \log(x) \right]_{1}^{4} - \frac{4}{3} \left[ \frac{2}{3} x^{\frac{3}{2}} \right]_{1}^{4}=2[32x23log(x)]14−34[32x23]14=2(23(4)32log(4)−23(1)32log(1))−43(23(4)32−23(1)32)= 2 \left( \frac{2}{3} (4)^{\frac{3}{2}} \log(4) - \frac{2}{3} (1)^{\frac{3}{2}} \log(1) \right) - \frac{4}{3} \left( \frac{2}{3} (4)^{\frac{3}{2}} - \frac{2}{3} (1)^{\frac{3}{2}} \right)=2(32(4)23log(4)−32(1)23log(1))−34(32(4)23−32(1)23)=2(23(8)log(4)−0)−43(23(8)−23(1))= 2 \left( \frac{2}{3} (8) \log(4) - 0 \right) - \frac{4}{3} \left( \frac{2}{3} (8) - \frac{2}{3} (1) \right)=2(32(8)log(4)−0)−34(32(8)−32(1))=323log(4)−43(163−23)= \frac{32}{3} \log(4) - \frac{4}{3} \left( \frac{16}{3} - \frac{2}{3} \right)=332log(4)−34(316−32)=323log(4)−43(143)= \frac{32}{3} \log(4) - \frac{4}{3} \left( \frac{14}{3} \right)=332log(4)−34(314)=323log(4)−569= \frac{32}{3} \log(4) - \frac{56}{9}=332log(4)−956=323log(22)−569= \frac{32}{3} \log(2^2) - \frac{56}{9}=332log(22)−956=323(2log(2))−569= \frac{32}{3} (2 \log(2)) - \frac{56}{9}=332(2log(2))−956=643log(2)−569= \frac{64}{3} \log(2) - \frac{56}{9}=364log(2)−956=192log(2)−569= \frac{192 \log(2) - 56}{9}=9192log(2)−56=8(24log(2)−7)9= \frac{8(24 \log(2) - 7)}{9}=98(24log(2)−7)3. 最終的な答え643log(2)−569\frac{64}{3} \log(2) - \frac{56}{9}364log(2)−956または8(24log(2)−7)9\frac{8(24 \log(2) - 7)}{9}98(24log(2)−7)