グラフからY社の2017年から2019年の総資産利益率の平均を求め、選択肢の中から最も近いものを選ぶ問題です。

応用数学統計平均データ分析グラフ
2025/5/21

1. 問題の内容

グラフからY社の2017年から2019年の総資産利益率の平均を求め、選択肢の中から最も近いものを選ぶ問題です。

2. 解き方の手順

* グラフから、Y社の2017年、2018年、2019年の総資産利益率を読み取ります。
* 2017年の総資産利益率: 2.5%
* 2018年の総資産利益率: 1.4%
* 2019年の総資産利益率: 2.3%
* 3年間の総資産利益率の合計を計算します。
2.5+1.4+2.3=6.22.5 + 1.4 + 2.3 = 6.2
* 3年間の総資産利益率の平均を計算します。
6.2/32.06676.2 / 3 \fallingdotseq 2.0667
* 計算結果に最も近い選択肢を選びます。

3. 最終的な答え

2. 0%

「応用数学」の関連問題

一様な板ABが支柱C, Dによって水平に支えられており、その上に重さ24Nのおもりが置かれている。板が支柱C, Dから受ける力の大きさをそれぞれ$N_C$ [N], $N_D$ [N]とする。おもりは...

力学モーメント力のつり合いグラフ
2025/5/22

長さ $L$、質量 $m$ の一様な棒ABの一端Aが壁に蝶番で固定され、他端Bが糸で壁に繋がれています。糸と水平面のなす角は30度です。Aにはたらく力の水平方向と鉛直方向の成分をそれぞれ $F_x$ ...

力学モーメント力のつりあい剛体物理
2025/5/22

半径2の円周上を運動する質点A, Bについて、時刻tにおける位置ベクトル$r^A(t)$と$r^B(t)$が与えられています。 $r^A(t) = 2 (cos(\frac{\pi t}{3} - \...

ベクトル円運動角速度加速度軌跡微分
2025/5/22

半径2の円周上を運動する質点A, Bについて、時刻tにおける位置がそれぞれ以下のように与えられています。 $r^A(t) = 2(\cos(\frac{\pi t}{3} - \frac{\pi}{6...

ベクトル円運動角速度加速度運動解析微分
2025/5/22

2階線形同次微分方程式 $4y'' - 12y' + 9y = 0$ の一般解を求め、初期条件 $x = 0$ のとき $y = 1$, $y' = 2$ を満たす解を、選択肢の中から選びます。

微分方程式線形微分方程式初期条件一般解特性方程式
2025/5/22

半径2の円周上を運動する質点AとBについて、時刻 $t$ における位置ベクトルがそれぞれ $r^A(t) = 2(\cos(\frac{\pi t}{3} - \frac{\pi}{6})i + \s...

ベクトル円運動角速度加速度接線成分法線成分軌跡
2025/5/22

半径2の円周上を運動する質点AとBについて、時刻 $t$ におけるそれぞれの位置が与えられています。 Aの位置ベクトル: $r^A(t) = 2(\cos(\frac{\pi t}{3} - \fra...

ベクトル円運動角速度加速度軌跡微分
2025/5/22

10 kgとP [kg]の物体がロープで吊るされ、図のような位置で静止している。ロープAB, BC, CDの張力の大きさとPの値を求めよ。

力学力の釣り合いベクトル三角関数
2025/5/22

デルタ結線された三相交流回路に、線間電圧 $E_{ab} = 200\angle 0^\circ$, $E_{bc} = 200\angle -120^\circ$, $E_{ca} = 200\an...

電気回路三相交流インピーダンス複素数オームの法則
2025/5/22

質量5.0kgの小球が軽い糸で天井から吊るされている。小球は水平方向に力$F$で押され、糸が天井と30°の角をなして静止している。このときの糸の張力$T$を求める。重力加速度は9.8m/s²とする。

力学ベクトル力のつりあい三角関数
2025/5/22