数列 $\frac{2}{1}, \frac{3}{2}, \frac{4}{3}, \dots, \frac{n+1}{n}, \dots$ の極限値を求めます。

解析学数列極限収束
2025/5/21

1. 問題の内容

数列 21,32,43,,n+1n,\frac{2}{1}, \frac{3}{2}, \frac{4}{3}, \dots, \frac{n+1}{n}, \dots の極限値を求めます。

2. 解き方の手順

数列の一般項は an=n+1na_n = \frac{n+1}{n} と表されます。この数列の極限値を求めるために、nnを無限大に近づけたときのana_nの値を計算します。
an=n+1na_n = \frac{n+1}{n} を変形します。
an=nn+1n=1+1na_n = \frac{n}{n} + \frac{1}{n} = 1 + \frac{1}{n}
ここで、nn \to \infty のとき、1n0\frac{1}{n} \to 0 となることを利用します。
limnan=limn(1+1n)=1+limn1n=1+0=1\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right) = 1 + \lim_{n \to \infty} \frac{1}{n} = 1 + 0 = 1

3. 最終的な答え

1

「解析学」の関連問題

点(2, 2)から放物線 $C: y = x^2 - 2x + 6$ に引いた2本の接線の方程式を求め、さらに放物線 $C$ と2本の接線で囲まれた図形の面積を求めます。

微分接線積分面積
2025/5/22

与えられた関数 $\frac{x}{e^x - 1}$ のマクローリン展開におけるベルヌーイ数 $B_n$ に関する問題です。具体的には、以下の3つの問いに答えます。 (1) $B_0, B_1, B...

ベルヌーイ数マクローリン展開母関数
2025/5/22

与えられた関数 $\frac{x}{e^x-1}$ のマクローリン展開におけるベルヌーイ数 $B_n$ について、以下の問いに答えます。 (1) $B_0, B_1, B_2, B_3$ を求めます。...

マクローリン展開ベルヌーイ数級数
2025/5/22

$x \to 0$ のとき、以下の式を満たすような空欄に適切な数式を記入する問題です。 (1) $\frac{x - \sin x}{x^3} = \Box + o(x)$ (2) $\log \fr...

テイラー展開極限o記法
2025/5/22

この問題は、マクローリン展開に関する問題、関数の極限、ベルヌーイ数に関する問題から構成されています。具体的には、以下の内容が含まれています。 * cosxのマクローリン展開 * 関数の連続性と...

マクローリン展開関数の極限ランダウの記号ベルヌーイ数テイラー展開関数の近似
2025/5/22

与えられたベルヌーイ数の定義式 $\frac{x}{e^x - 1} = \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n$ を用いて、以下の3つの問いに答えます。 (1)...

ベルヌーイ数マクローリン展開級数
2025/5/22

$x \to 0$のとき、以下の式の空欄に入る適切な式を求めよ。 (1) $\frac{x - \sin x}{x^3} = \fbox{} + o(x)$ (2) $\log \frac{1+x}{...

極限マクローリン展開テイラー展開o記法
2025/5/22

画像に示された3つの問題は、テイラー展開やマクローリン展開に関する穴埋め問題です。 (1) cosx のテイラー展開とその剰余項に関する問題。 (2) 関数 $f(x)$ が連続で $f''(0) \...

テイラー展開マクローリン展開極限剰余項
2025/5/22

マクローリンの定理を用いて、与えられた式における空欄を埋める問題です。具体的には、(1) $\cos x$ のマクローリン展開とその剰余項、(2) $f(x) = f(0) + xf'(cx)$ にお...

マクローリン展開テイラー展開剰余項極限平均値の定理
2025/5/22

与えられた7つの極限値をロピタルの定理を用いて計算する問題です。 (1) $\lim_{x \to \infty} \frac{x^n}{e^x}$ (2) $\lim_{x \to \frac{\p...

極限ロピタルの定理微分テイラー展開
2025/5/22