次の定積分を計算します。 $\int_{0}^{1} \log(x^2 + 1) \, dx$解析学定積分部分積分対数関数arctan2025/5/221. 問題の内容次の定積分を計算します。∫01log(x2+1) dx\int_{0}^{1} \log(x^2 + 1) \, dx∫01log(x2+1)dx2. 解き方の手順部分積分を使って計算します。u=log(x2+1)u = \log(x^2 + 1)u=log(x2+1), dv=dxdv = dxdv=dx とすると、du=2xx2+1 dxdu = \frac{2x}{x^2 + 1} \, dxdu=x2+12xdx, v=xv = xv=x となります。部分積分の公式 ∫u dv=uv−∫v du\int u \, dv = uv - \int v \, du∫udv=uv−∫vdu を適用すると、∫01log(x2+1) dx=[xlog(x2+1)]01−∫01x⋅2xx2+1 dx\int_{0}^{1} \log(x^2 + 1) \, dx = \left[ x \log(x^2 + 1) \right]_{0}^{1} - \int_{0}^{1} x \cdot \frac{2x}{x^2 + 1} \, dx∫01log(x2+1)dx=[xlog(x2+1)]01−∫01x⋅x2+12xdx=[xlog(x2+1)]01−∫012x2x2+1 dx= \left[ x \log(x^2 + 1) \right]_{0}^{1} - \int_{0}^{1} \frac{2x^2}{x^2 + 1} \, dx=[xlog(x2+1)]01−∫01x2+12x2dx=(1⋅log(12+1)−0⋅log(02+1))−∫012x2x2+1 dx= (1 \cdot \log(1^2 + 1) - 0 \cdot \log(0^2 + 1)) - \int_{0}^{1} \frac{2x^2}{x^2 + 1} \, dx=(1⋅log(12+1)−0⋅log(02+1))−∫01x2+12x2dx=log(2)−∫012x2x2+1 dx= \log(2) - \int_{0}^{1} \frac{2x^2}{x^2 + 1} \, dx=log(2)−∫01x2+12x2dxここで、被積分関数を以下のように変形します。2x2x2+1=2(x2+1)−2x2+1=2−2x2+1\frac{2x^2}{x^2 + 1} = \frac{2(x^2 + 1) - 2}{x^2 + 1} = 2 - \frac{2}{x^2 + 1}x2+12x2=x2+12(x2+1)−2=2−x2+12したがって、∫012x2x2+1 dx=∫01(2−2x2+1) dx\int_{0}^{1} \frac{2x^2}{x^2 + 1} \, dx = \int_{0}^{1} \left( 2 - \frac{2}{x^2 + 1} \right) \, dx∫01x2+12x2dx=∫01(2−x2+12)dx=[2x−2arctan(x)]01= \left[ 2x - 2 \arctan(x) \right]_{0}^{1}=[2x−2arctan(x)]01=(2⋅1−2arctan(1))−(2⋅0−2arctan(0))= (2 \cdot 1 - 2 \arctan(1)) - (2 \cdot 0 - 2 \arctan(0))=(2⋅1−2arctan(1))−(2⋅0−2arctan(0))=2−2⋅π4−0=2−π2= 2 - 2 \cdot \frac{\pi}{4} - 0 = 2 - \frac{\pi}{2}=2−2⋅4π−0=2−2πよって、∫01log(x2+1) dx=log(2)−(2−π2)=log(2)−2+π2\int_{0}^{1} \log(x^2 + 1) \, dx = \log(2) - \left( 2 - \frac{\pi}{2} \right) = \log(2) - 2 + \frac{\pi}{2}∫01log(x2+1)dx=log(2)−(2−2π)=log(2)−2+2π3. 最終的な答えlog(2)−2+π2\log(2) - 2 + \frac{\pi}{2}log(2)−2+2π