数列 $a, 3, a^2$ が等差数列であるとき、$a$ の値を求めよ。

代数学等差数列二次方程式因数分解
2025/5/22

1. 問題の内容

数列 a,3,a2a, 3, a^2 が等差数列であるとき、aa の値を求めよ。

2. 解き方の手順

等差数列では、隣り合う項の差が一定です。つまり、
3a=a233 - a = a^2 - 3
が成り立ちます。この方程式を解くことで、aa の値を求めることができます。
まず、方程式を整理します。
3a=a233 - a = a^2 - 3
a2+a6=0a^2 + a - 6 = 0
次に、この2次方程式を解きます。因数分解を利用します。
(a+3)(a2)=0(a + 3)(a - 2) = 0
よって、a=3a = -3 または a=2a = 2 となります。

3. 最終的な答え

a=3,2a = -3, 2

「代数学」の関連問題

不等式 $200 + 12(n-10) \le 15n$ を満たす最小の自然数 $n$ を求める問題です。

不等式一次不等式自然数不等式の解法
2025/5/22

数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とする。 (1) $S_n = 3n^2 + 4n + 2$のとき、一般項$a_n$を求める。 (2) (1)のとき、$\sum_{k=1...

数列一般項シグマ
2025/5/22

与えられた式 $x(2y-x)^2 + 2x^2(x-2y)$ を因数分解する。

因数分解多項式
2025/5/22

$m, n$ を整数とする。多項式 $A = x^3 + mx^2 + nx + 2m + n + 1$ を多項式 $B = x^2 - 2x - 1$ で割ったときの商 $Q$ と余り $R$ を求...

多項式割り算因数定理解の公式
2025/5/22

画像にある線形方程式のグラフを描画する問題です。具体的には、 * 3x + 4y = 12 * 5x + 2y = -10 * 3x - 5y = 15 * -3x + y = 3 *...

線形方程式グラフ直線のグラフ座標平面
2025/5/22

与えられた連立不等式 $3x < x + 12 < 2x + 8$ を解く。

不等式連立不等式一次不等式
2025/5/22

与えられた式 $(3x + 6y + 9) \times \frac{2}{3}x$ を展開し、簡略化します。

式の展開多項式分配法則簡略化
2025/5/22

2つの一次方程式、2x + y + 1 = 0 と 2x - 3y = 12 について、グラフを描画せよという問題だと推測されます。ただし、画像にはグラフ用紙しかありません。

一次方程式グラフ直線のグラフ連立方程式
2025/5/22

与えられた式 $(3x + 6y + 9) \times (2 - 3x)$ を展開し、整理せよ。

展開多項式因数分解整理
2025/5/22

与えられた方程式は $xy + 1 + x + y = x$ です。この方程式を解いて $x$ を求めることが問題です。

方程式式の整理変数変換
2025/5/22