媒介変数 $t$ で表された曲線 $x = 2(t - \sin t)$, $y = 2(1 - \cos t)$ ($0 \le t \le 2\pi$) の長さ $L$ を求めよ。解析学曲線曲線の長さ積分媒介変数2025/5/221. 問題の内容媒介変数 ttt で表された曲線 x=2(t−sint)x = 2(t - \sin t)x=2(t−sint), y=2(1−cost)y = 2(1 - \cos t)y=2(1−cost) (0≤t≤2π0 \le t \le 2\pi0≤t≤2π) の長さ LLL を求めよ。2. 解き方の手順曲線の長さ LLL は、次の式で求められます。L=∫ab(dxdt)2+(dydt)2dtL = \int_{a}^{b} \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dtL=∫ab(dtdx)2+(dtdy)2dtまず、xxx と yyy を ttt で微分します。dxdt=2(1−cost)\frac{dx}{dt} = 2(1 - \cos t)dtdx=2(1−cost)dydt=2sint\frac{dy}{dt} = 2\sin tdtdy=2sint次に、(dxdt)2+(dydt)2(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2(dtdx)2+(dtdy)2 を計算します。(dxdt)2+(dydt)2=(2(1−cost))2+(2sint)2=4(1−2cost+cos2t)+4sin2t(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2 = (2(1-\cos t))^2 + (2\sin t)^2 = 4(1 - 2\cos t + \cos^2 t) + 4\sin^2 t(dtdx)2+(dtdy)2=(2(1−cost))2+(2sint)2=4(1−2cost+cos2t)+4sin2t=4(1−2cost+cos2t+sin2t)=4(1−2cost+1)=4(2−2cost)=8(1−cost)= 4(1 - 2\cos t + \cos^2 t + \sin^2 t) = 4(1 - 2\cos t + 1) = 4(2 - 2\cos t) = 8(1 - \cos t)=4(1−2cost+cos2t+sin2t)=4(1−2cost+1)=4(2−2cost)=8(1−cost)ここで、半角の公式 1−cost=2sin2(t2)1 - \cos t = 2\sin^2(\frac{t}{2})1−cost=2sin2(2t) を使います。8(1−cost)=8⋅2sin2(t2)=16sin2(t2)8(1 - \cos t) = 8 \cdot 2 \sin^2(\frac{t}{2}) = 16 \sin^2(\frac{t}{2})8(1−cost)=8⋅2sin2(2t)=16sin2(2t)したがって、(dxdt)2+(dydt)2=16sin2(t2)=4∣sin(t2)∣\sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} = \sqrt{16\sin^2(\frac{t}{2})} = 4|\sin(\frac{t}{2})|(dtdx)2+(dtdy)2=16sin2(2t)=4∣sin(2t)∣0≤t≤2π0 \le t \le 2\pi0≤t≤2π より、0≤t2≤π0 \le \frac{t}{2} \le \pi0≤2t≤π なので、sin(t2)≥0\sin(\frac{t}{2}) \ge 0sin(2t)≥0。よって、∣sin(t2)∣=sin(t2)|\sin(\frac{t}{2})| = \sin(\frac{t}{2})∣sin(2t)∣=sin(2t)。L=∫02π4sin(t2)dt=4∫02πsin(t2)dt=4[−2cos(t2)]02π=−8[cos(t2)]02πL = \int_{0}^{2\pi} 4\sin(\frac{t}{2}) dt = 4 \int_{0}^{2\pi} \sin(\frac{t}{2}) dt = 4 [-2\cos(\frac{t}{2})]_{0}^{2\pi} = -8[\cos(\frac{t}{2})]_{0}^{2\pi}L=∫02π4sin(2t)dt=4∫02πsin(2t)dt=4[−2cos(2t)]02π=−8[cos(2t)]02π=−8(cos(π)−cos(0))=−8(−1−1)=−8(−2)=16= -8(\cos(\pi) - \cos(0)) = -8(-1 - 1) = -8(-2) = 16=−8(cos(π)−cos(0))=−8(−1−1)=−8(−2)=163. 最終的な答えL=16L = 16L=16