三角形ABCにおいて、辺aの長さが$\sqrt{13}$、辺bの長さが3、辺cの長さが4であるとき、角Aの大きさを求めよ。

幾何学三角形余弦定理角度
2025/5/22

1. 問題の内容

三角形ABCにおいて、辺aの長さが13\sqrt{13}、辺bの長さが3、辺cの長さが4であるとき、角Aの大きさを求めよ。

2. 解き方の手順

余弦定理を用いる。角Aに対する余弦定理は、
a2=b2+c22bccosAa^2 = b^2 + c^2 - 2bc\cos{A}
である。この式を変形して、cosA\cos{A}について解くと、
cosA=b2+c2a22bc\cos{A} = \frac{b^2 + c^2 - a^2}{2bc}
となる。与えられた値を代入すると、
cosA=32+42(13)2234=9+161324=1224=12\cos{A} = \frac{3^2 + 4^2 - (\sqrt{13})^2}{2 \cdot 3 \cdot 4} = \frac{9 + 16 - 13}{24} = \frac{12}{24} = \frac{1}{2}
cosA=12\cos{A} = \frac{1}{2}となる角Aは、A=60A = 60^\circである。

3. 最終的な答え

6060^\circ

「幾何学」の関連問題

2つのベクトルの内積を求める問題です。 (1) $\vec{a} = (2, -5)$, $\vec{b} = (4, 1)$ (2) $\vec{a} = (\sqrt{2}, 1)$, $\vec...

ベクトル内積ベクトルの内積
2025/5/22

問題11では、基本ベクトル$\vec{i}, \vec{j}$の内積$\vec{i} \cdot \vec{i}$, $\vec{j} \cdot \vec{j}$, $\vec{i} \cdot \...

ベクトル内積三角比三角関数
2025/5/22

点A(-1, 3)、B(1, 2) が与えられたとき、ベクトル$\overrightarrow{AB}$と同じ向きの単位ベクトルを求める問題です。

ベクトル単位ベクトルベクトルの計算ベクトルの大きさ
2025/5/22

3点A(3, 0), B(4, 3), C(-1, 1) が与えられたとき、ベクトルAB, BC, CA の大きさをそれぞれ求めよ。

ベクトルベクトルの大きさ座標平面
2025/5/22

$\triangle OAB$において、辺$OA$を$3:2$に内分する点を$C$、辺$OB$を$1:2$に内分する点を$D$とする。線分$AD$と線分$BC$の交点を$P$とするとき、$\vec{O...

ベクトル内分線分の交点
2025/5/22

与えられた三角関数の式 $cos^2{20^\circ} + cos^2{110^\circ}$ の値を求めます。

三角関数三角比三角関数の恒等式
2025/5/22

木の根元から水平に9m離れた地点に立って木の先端を見上げると、水平面とのなす角が35°であった。目の高さを1.6mとして、木の高さを求めなさい。ただし、小数第2位を四捨五入しなさい。

三角比tan高さ角度
2025/5/22

問題は、図1~4のような問題に対して、「三角比の相互関係」を利用して解く場合、どのように解けるかを答えるものです。

三角比三角比の相互関係sincostancot
2025/5/22

$\cos \theta = 0.31$ となる鋭角 $\theta$ のおおよその大きさを求める問題です。教科書P.166の三角比の表を利用する必要があります。

三角比cos角度近似
2025/5/22

三角比の表を用いて、$\tan 77^\circ$ の値を小数第4位まで求めよ。

三角比三角関数tan角度
2025/5/22