定積分 $\int_{-1}^2 |2x^2 - x - 1| \, dx$ を計算します。解析学定積分絶対値積分計算2025/5/241. 問題の内容定積分 ∫−12∣2x2−x−1∣ dx\int_{-1}^2 |2x^2 - x - 1| \, dx∫−12∣2x2−x−1∣dx を計算します。2. 解き方の手順まず、2x2−x−1=02x^2 - x - 1 = 02x2−x−1=0となるxxxを求めます。2x2−x−1=(2x+1)(x−1)=02x^2 - x - 1 = (2x + 1)(x - 1) = 02x2−x−1=(2x+1)(x−1)=0なので、x=1,−12x = 1, -\frac{1}{2}x=1,−21です。したがって、積分区間を−1≤x≤−12-1 \le x \le -\frac{1}{2}−1≤x≤−21, −12≤x≤1-\frac{1}{2} \le x \le 1−21≤x≤1, 1≤x≤21 \le x \le 21≤x≤2に分けて考えます。(1) −1≤x≤−12-1 \le x \le -\frac{1}{2}−1≤x≤−21のとき、2x2−x−1≥02x^2 - x - 1 \ge 02x2−x−1≥0なので、∣2x2−x−1∣=2x2−x−1|2x^2 - x - 1| = 2x^2 - x - 1∣2x2−x−1∣=2x2−x−1。(2) −12≤x≤1-\frac{1}{2} \le x \le 1−21≤x≤1のとき、2x2−x−1≤02x^2 - x - 1 \le 02x2−x−1≤0なので、∣2x2−x−1∣=−(2x2−x−1)=−2x2+x+1|2x^2 - x - 1| = -(2x^2 - x - 1) = -2x^2 + x + 1∣2x2−x−1∣=−(2x2−x−1)=−2x2+x+1。(3) 1≤x≤21 \le x \le 21≤x≤2のとき、2x2−x−1≥02x^2 - x - 1 \ge 02x2−x−1≥0なので、∣2x2−x−1∣=2x2−x−1|2x^2 - x - 1| = 2x^2 - x - 1∣2x2−x−1∣=2x2−x−1。よって、∫−12∣2x2−x−1∣ dx=∫−1−12(2x2−x−1) dx+∫−121(−2x2+x+1) dx+∫12(2x2−x−1) dx\int_{-1}^2 |2x^2 - x - 1| \, dx = \int_{-1}^{-\frac{1}{2}} (2x^2 - x - 1) \, dx + \int_{-\frac{1}{2}}^1 (-2x^2 + x + 1) \, dx + \int_1^2 (2x^2 - x - 1) \, dx∫−12∣2x2−x−1∣dx=∫−1−21(2x2−x−1)dx+∫−211(−2x2+x+1)dx+∫12(2x2−x−1)dxそれぞれの積分を計算します。∫(2x2−x−1) dx=23x3−12x2−x+C\int (2x^2 - x - 1) \, dx = \frac{2}{3}x^3 - \frac{1}{2}x^2 - x + C∫(2x2−x−1)dx=32x3−21x2−x+C∫(−2x2+x+1) dx=−23x3+12x2+x+C\int (-2x^2 + x + 1) \, dx = -\frac{2}{3}x^3 + \frac{1}{2}x^2 + x + C∫(−2x2+x+1)dx=−32x3+21x2+x+C∫−1−12(2x2−x−1) dx=[23x3−12x2−x]−1−12=(23(−18)−12(14)−(−12))−(23(−1)−12(1)−(−1))=(−112−18+12)−(−23−12+1)=−2−3+1224−−4−3+66=724−(−16)=724+424=1124\int_{-1}^{-\frac{1}{2}} (2x^2 - x - 1) \, dx = \left[ \frac{2}{3}x^3 - \frac{1}{2}x^2 - x \right]_{-1}^{-\frac{1}{2}} = \left(\frac{2}{3}\left(-\frac{1}{8}\right) - \frac{1}{2}\left(\frac{1}{4}\right) - \left(-\frac{1}{2}\right)\right) - \left(\frac{2}{3}(-1) - \frac{1}{2}(1) - (-1)\right) = \left(-\frac{1}{12} - \frac{1}{8} + \frac{1}{2}\right) - \left(-\frac{2}{3} - \frac{1}{2} + 1\right) = \frac{-2 - 3 + 12}{24} - \frac{-4 - 3 + 6}{6} = \frac{7}{24} - \left(-\frac{1}{6}\right) = \frac{7}{24} + \frac{4}{24} = \frac{11}{24}∫−1−21(2x2−x−1)dx=[32x3−21x2−x]−1−21=(32(−81)−21(41)−(−21))−(32(−1)−21(1)−(−1))=(−121−81+21)−(−32−21+1)=24−2−3+12−6−4−3+6=247−(−61)=247+244=2411∫−121(−2x2+x+1) dx=[−23x3+12x2+x]−121=(−23+12+1)−(−23(−18)+12(14)+(−12))=−4+3+66−(112+18−12)=56−2+3−1224=56−(−724)=2024+724=2724=98\int_{-\frac{1}{2}}^1 (-2x^2 + x + 1) \, dx = \left[ -\frac{2}{3}x^3 + \frac{1}{2}x^2 + x \right]_{-\frac{1}{2}}^1 = \left(-\frac{2}{3} + \frac{1}{2} + 1\right) - \left(-\frac{2}{3}\left(-\frac{1}{8}\right) + \frac{1}{2}\left(\frac{1}{4}\right) + \left(-\frac{1}{2}\right)\right) = \frac{-4 + 3 + 6}{6} - \left(\frac{1}{12} + \frac{1}{8} - \frac{1}{2}\right) = \frac{5}{6} - \frac{2 + 3 - 12}{24} = \frac{5}{6} - \left(-\frac{7}{24}\right) = \frac{20}{24} + \frac{7}{24} = \frac{27}{24} = \frac{9}{8}∫−211(−2x2+x+1)dx=[−32x3+21x2+x]−211=(−32+21+1)−(−32(−81)+21(41)+(−21))=6−4+3+6−(121+81−21)=65−242+3−12=65−(−247)=2420+247=2427=89∫12(2x2−x−1) dx=[23x3−12x2−x]12=(23(8)−12(4)−2)−(23−12−1)=(163−2−2)−(4−3−66)=163−4−(−56)=163−4+56=32−24+56=136\int_1^2 (2x^2 - x - 1) \, dx = \left[ \frac{2}{3}x^3 - \frac{1}{2}x^2 - x \right]_1^2 = \left(\frac{2}{3}(8) - \frac{1}{2}(4) - 2\right) - \left(\frac{2}{3} - \frac{1}{2} - 1\right) = \left(\frac{16}{3} - 2 - 2\right) - \left(\frac{4 - 3 - 6}{6}\right) = \frac{16}{3} - 4 - \left(-\frac{5}{6}\right) = \frac{16}{3} - 4 + \frac{5}{6} = \frac{32 - 24 + 5}{6} = \frac{13}{6}∫12(2x2−x−1)dx=[32x3−21x2−x]12=(32(8)−21(4)−2)−(32−21−1)=(316−2−2)−(64−3−6)=316−4−(−65)=316−4+65=632−24+5=613∫−12∣2x2−x−1∣ dx=1124+98+136=11+27+5224=9024=154\int_{-1}^2 |2x^2 - x - 1| \, dx = \frac{11}{24} + \frac{9}{8} + \frac{13}{6} = \frac{11 + 27 + 52}{24} = \frac{90}{24} = \frac{15}{4}∫−12∣2x2−x−1∣dx=2411+89+613=2411+27+52=2490=4153. 最終的な答え154\frac{15}{4}415