関数 $y = f(x) = \sin(\sin x)$ を微分してください。解析学微分合成関数三角関数2025/5/241. 問題の内容関数 y=f(x)=sin(sinx)y = f(x) = \sin(\sin x)y=f(x)=sin(sinx) を微分してください。2. 解き方の手順合成関数の微分法を用います。y=sin(u)y = \sin(u)y=sin(u) かつ u=sin(x)u = \sin(x)u=sin(x)と置くと、dydx=dydu⋅dudx\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}dxdy=dudy⋅dxduとなります。まず、y=sin(u)y = \sin(u)y=sin(u)を uuu で微分すると、dydu=cos(u)\frac{dy}{du} = \cos(u)dudy=cos(u)次に、u=sin(x)u = \sin(x)u=sin(x)を xxx で微分すると、dudx=cos(x)\frac{du}{dx} = \cos(x)dxdu=cos(x)したがって、dydx=cos(u)⋅cos(x)\frac{dy}{dx} = \cos(u) \cdot \cos(x)dxdy=cos(u)⋅cos(x)ここで、u=sin(x)u = \sin(x)u=sin(x) なので、dydx=cos(sin(x))⋅cos(x)\frac{dy}{dx} = \cos(\sin(x)) \cdot \cos(x)dxdy=cos(sin(x))⋅cos(x)3. 最終的な答えdydx=cos(x)cos(sinx)\frac{dy}{dx} = \cos(x)\cos(\sin x)dxdy=cos(x)cos(sinx)