2変数関数 $z = f(x, y) = 2(x - y)$ の偏導関数 $f_x(x, y)$ と $f_y(x, y)$ を求める問題です。

解析学偏微分多変数関数
2025/5/24

1. 問題の内容

2変数関数 z=f(x,y)=2(xy)z = f(x, y) = 2(x - y) の偏導関数 fx(x,y)f_x(x, y)fy(x,y)f_y(x, y) を求める問題です。

2. 解き方の手順

まず、f(x,y)f(x, y) を展開します。
f(x,y)=2x2yf(x, y) = 2x - 2y
次に、xx についての偏微分 fx(x,y)f_x(x, y) を計算します。yy は定数として扱います。
fx(x,y)=fx=x(2x2y)=2f_x(x, y) = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x}(2x - 2y) = 2
次に、yy についての偏微分 fy(x,y)f_y(x, y) を計算します。xx は定数として扱います。
fy(x,y)=fy=y(2x2y)=2f_y(x, y) = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y}(2x - 2y) = -2

3. 最終的な答え

fx(x,y)=2f_x(x, y) = 2
fy(x,y)=2f_y(x, y) = -2

「解析学」の関連問題

数列 $\{a_n\}$ が与えられたとき、$n \ge N$ ならば $|a_n - \alpha| < 10^{-4}$ が成り立つような最小の自然数 $N$ を求める問題です。ここで、$\alp...

数列極限収束不等式
2025/5/24

与えられた三角関数 $y = 2\sin(\frac{\theta}{2} - \frac{\pi}{3}) + 1$ の周期を求め、さらに、関数 $y = 2\sin\frac{\theta}{2}...

三角関数周期グラフの平行移動振幅
2025/5/24

領域$D$上で、関数$e^{x+y}$の重積分を計算します。ここで領域$D$は、$y \ge 0$, $y \le x$, $x+y \le 2$によって定義されます。

重積分多重積分積分領域
2025/5/24

領域 $D$ が $y \ge 1-x$, $x \le 1$, $y \le 1$ で定義されるとき、二重積分 $\iint_D x^2 y \, dx dy$ の値を計算します。

二重積分領域積分計算
2025/5/24

領域 $D$ 上の重積分 $\iint_D x^2 y \,dx\,dy$ を計算します。領域 $D$ は $y \ge 1-x$, $x \le 1$, $y \le 1$ で定義されています。

重積分積分領域二重積分
2025/5/24

半径2の円周上を運動する質点AとBについて、それぞれの時刻$t$における位置が与えられています。 $r^A(t) = 2(\cos(\frac{\pi t}{3} - \frac{\pi}{6})i ...

円運動軌跡角速度加速度速度微分
2025/5/24

半径2の円周上を運動する2つの質点AとBについて、与えられた位置ベクトル $\vec{r}^A(t)$ と $\vec{r}^B(t)$ をもとに、以下の問いに答える。 * (i) $0 \le ...

ベクトル円運動軌跡角速度加速度微分
2025/5/24

半径2の円周上を運動する質点A, Bの位置がそれぞれ $r^A(t) = 2 (\cos(\frac{\pi t}{3} - \frac{\pi}{6})i + \sin(\frac{\pi t}{3...

ベクトル解析円運動角速度加速度速度
2025/5/24

2変数関数 $z = f(x, y) = x^2 - 6xy + 2y^3$ について、極値があればその値と極大値または極小値を求め、極値がなければ「なし」と答える。

多変数関数偏微分極値ヘッセ行列
2025/5/24

半径2の円周上を運動する質点A, Bについて、それぞれの時刻 $t$ における位置が与えられています。 - 質点Aの位置: $\vec{r}^A(t) = 2(\cos(\frac{\pi t}{3}...

円運動ベクトル速度加速度微分軌跡
2025/5/24