与えられた関数について、$\frac{dy}{dx}$を求める問題です。 (1) $x = 2y^2 + 3\sqrt{y}$ (2) $\tan x + \frac{\log y}{3\sqrt{y}} = 5$解析学微分陰関数微分合成関数の微分導関数2025/5/241. 問題の内容与えられた関数について、dydx\frac{dy}{dx}dxdyを求める問題です。(1) x=2y2+3yx = 2y^2 + 3\sqrt{y}x=2y2+3y(2) tanx+logy3y=5\tan x + \frac{\log y}{3\sqrt{y}} = 5tanx+3ylogy=52. 解き方の手順(1)x=2y2+3yx = 2y^2 + 3\sqrt{y}x=2y2+3yをxxxで微分します。dxdx=ddx(2y2)+ddx(3y)\frac{dx}{dx} = \frac{d}{dx}(2y^2) + \frac{d}{dx}(3\sqrt{y})dxdx=dxd(2y2)+dxd(3y)1=4ydydx+3⋅12ydydx1 = 4y\frac{dy}{dx} + 3\cdot\frac{1}{2\sqrt{y}}\frac{dy}{dx}1=4ydxdy+3⋅2y1dxdy1=(4y+32y)dydx1 = (4y + \frac{3}{2\sqrt{y}})\frac{dy}{dx}1=(4y+2y3)dxdydydx=14y+32y=18yy+32y=2y8yy+3\frac{dy}{dx} = \frac{1}{4y + \frac{3}{2\sqrt{y}}} = \frac{1}{\frac{8y\sqrt{y}+3}{2\sqrt{y}}} = \frac{2\sqrt{y}}{8y\sqrt{y}+3}dxdy=4y+2y31=2y8yy+31=8yy+32ydydx=14y+32y\frac{dy}{dx} = \frac{1}{4y + \frac{3}{2\sqrt{y}}}dxdy=4y+2y31(2)tanx+logy3y=5\tan x + \frac{\log y}{3\sqrt{y}} = 5tanx+3ylogy=5をxxxで微分します。ddx(tanx)+ddx(logy3y)=ddx(5)\frac{d}{dx}(\tan x) + \frac{d}{dx}(\frac{\log y}{3\sqrt{y}}) = \frac{d}{dx}(5)dxd(tanx)+dxd(3ylogy)=dxd(5)1cos2x+131ydydxy−logy⋅12ydydxy=0\frac{1}{\cos^2 x} + \frac{1}{3} \frac{\frac{1}{y}\frac{dy}{dx}\sqrt{y} - \log y \cdot \frac{1}{2\sqrt{y}}\frac{dy}{dx}}{y} = 0cos2x1+31yy1dxdyy−logy⋅2y1dxdy=01cos2x+131ydydx−logy2ydydxy=0\frac{1}{\cos^2 x} + \frac{1}{3} \frac{\frac{1}{\sqrt{y}}\frac{dy}{dx} - \frac{\log y}{2\sqrt{y}}\frac{dy}{dx}}{y} = 0cos2x1+31yy1dxdy−2ylogydxdy=01cos2x+13(2−logy)dydx2yy=0\frac{1}{\cos^2 x} + \frac{1}{3} \frac{(2-\log y)\frac{dy}{dx}}{2y\sqrt{y}} = 0cos2x1+312yy(2−logy)dxdy=01cos2x+(2−logy)dydx6yy=0\frac{1}{\cos^2 x} + \frac{(2-\log y)\frac{dy}{dx}}{6y\sqrt{y}} = 0cos2x1+6yy(2−logy)dxdy=0(2−logy)dydx6yy=−1cos2x\frac{(2-\log y)\frac{dy}{dx}}{6y\sqrt{y}} = -\frac{1}{\cos^2 x}6yy(2−logy)dxdy=−cos2x1dydx=−6yycos2x(2−logy)\frac{dy}{dx} = -\frac{6y\sqrt{y}}{\cos^2 x (2-\log y)}dxdy=−cos2x(2−logy)6yy3. 最終的な答え(1) dydx=14y+32y\frac{dy}{dx} = \frac{1}{4y + \frac{3}{2\sqrt{y}}}dxdy=4y+2y31(2) dydx=−2y32cos2x(2−logy)\frac{dy}{dx} = -\frac{2y^{\frac{3}{2}}}{\cos^2 x(2-\log y)}dxdy=−cos2x(2−logy)2y23