次の3つの複素数の実部と虚部を求めます。 (1) $(1-i)^i$ (2) $\ln(1-i)$ (3) $\cosh(1+i)$解析学複素数複素指数関数対数関数双曲線関数極形式2025/5/241. 問題の内容次の3つの複素数の実部と虚部を求めます。(1) (1−i)i(1-i)^i(1−i)i(2) ln(1−i)\ln(1-i)ln(1−i)(3) cosh(1+i)\cosh(1+i)cosh(1+i)2. 解き方の手順(1) (1−i)i(1-i)^i(1−i)i の場合:まず、1−i1-i1−i を極形式で表します。1−i=2e−iπ/4=2(cos(−π/4)+isin(−π/4))1-i = \sqrt{2} e^{-i\pi/4} = \sqrt{2}(\cos(-\pi/4)+i\sin(-\pi/4))1−i=2e−iπ/4=2(cos(−π/4)+isin(−π/4))したがって、(1−i)i=(2e−iπ/4)i=(2)i(e−iπ/4)i=eiln(2)eπ/4=eπ/4eiln(2)=eπ/4(cos(ln(2))+isin(ln(2)))(1-i)^i = (\sqrt{2} e^{-i\pi/4})^i = (\sqrt{2})^i (e^{-i\pi/4})^i = e^{i\ln(\sqrt{2})} e^{\pi/4} = e^{\pi/4} e^{i\ln(\sqrt{2})} = e^{\pi/4} (\cos(\ln(\sqrt{2})) + i\sin(\ln(\sqrt{2})))(1−i)i=(2e−iπ/4)i=(2)i(e−iπ/4)i=eiln(2)eπ/4=eπ/4eiln(2)=eπ/4(cos(ln(2))+isin(ln(2)))実部は eπ/4cos(ln(2))e^{\pi/4} \cos(\ln(\sqrt{2}))eπ/4cos(ln(2))、虚部は eπ/4sin(ln(2))e^{\pi/4} \sin(\ln(\sqrt{2}))eπ/4sin(ln(2))(2) ln(1−i)\ln(1-i)ln(1−i) の場合:1−i1-i1−i を極形式で表すと、1−i=2e−iπ/41-i = \sqrt{2} e^{-i\pi/4}1−i=2e−iπ/4したがって、ln(1−i)=ln(2e−iπ/4)=ln(2)+ln(e−iπ/4)=ln(2)−iπ/4\ln(1-i) = \ln(\sqrt{2} e^{-i\pi/4}) = \ln(\sqrt{2}) + \ln(e^{-i\pi/4}) = \ln(\sqrt{2}) - i\pi/4ln(1−i)=ln(2e−iπ/4)=ln(2)+ln(e−iπ/4)=ln(2)−iπ/4実部は ln(2)=12ln(2)\ln(\sqrt{2}) = \frac{1}{2}\ln(2)ln(2)=21ln(2)、虚部は −π/4-\pi/4−π/4(3) cosh(1+i)\cosh(1+i)cosh(1+i) の場合:cosh(z)=ez+e−z2\cosh(z) = \frac{e^z + e^{-z}}{2}cosh(z)=2ez+e−z を用います。cosh(1+i)=e1+i+e−(1+i)2=e1ei+e−1e−i2=e(cos(1)+isin(1))+e−1(cos(−1)+isin(−1))2=e(cos(1)+isin(1))+e−1(cos(1)−isin(1))2=(e+e−1)cos(1)+i(e−e−1)sin(1)2=e+e−12cos(1)+ie−e−12sin(1)=cosh(1)cos(1)+isinh(1)sin(1)\cosh(1+i) = \frac{e^{1+i} + e^{-(1+i)}}{2} = \frac{e^1 e^i + e^{-1} e^{-i}}{2} = \frac{e(\cos(1)+i\sin(1)) + e^{-1}(\cos(-1)+i\sin(-1))}{2} = \frac{e(\cos(1)+i\sin(1)) + e^{-1}(\cos(1)-i\sin(1))}{2} = \frac{(e+e^{-1})\cos(1) + i(e-e^{-1})\sin(1)}{2} = \frac{e+e^{-1}}{2}\cos(1) + i \frac{e-e^{-1}}{2}\sin(1) = \cosh(1)\cos(1) + i\sinh(1)\sin(1)cosh(1+i)=2e1+i+e−(1+i)=2e1ei+e−1e−i=2e(cos(1)+isin(1))+e−1(cos(−1)+isin(−1))=2e(cos(1)+isin(1))+e−1(cos(1)−isin(1))=2(e+e−1)cos(1)+i(e−e−1)sin(1)=2e+e−1cos(1)+i2e−e−1sin(1)=cosh(1)cos(1)+isinh(1)sin(1)実部は cosh(1)cos(1)\cosh(1)\cos(1)cosh(1)cos(1)、虚部は sinh(1)sin(1)\sinh(1)\sin(1)sinh(1)sin(1)3. 最終的な答え(1) (1−i)i(1-i)^i(1−i)i の実部は eπ/4cos(ln(2))e^{\pi/4} \cos(\ln(\sqrt{2}))eπ/4cos(ln(2))、虚部は eπ/4sin(ln(2))e^{\pi/4} \sin(\ln(\sqrt{2}))eπ/4sin(ln(2))(2) ln(1−i)\ln(1-i)ln(1−i) の実部は 12ln(2)\frac{1}{2}\ln(2)21ln(2)、虚部は −π/4-\pi/4−π/4(3) cosh(1+i)\cosh(1+i)cosh(1+i) の実部は cosh(1)cos(1)\cosh(1)\cos(1)cosh(1)cos(1)、虚部は sinh(1)sin(1)\sinh(1)\sin(1)sinh(1)sin(1)