$\log_2 125 \cdot \log_3 16 \cdot \log_5 27$ の値を求めます。代数学対数対数の計算2025/5/241. 問題の内容log2125⋅log316⋅log527\log_2 125 \cdot \log_3 16 \cdot \log_5 27log2125⋅log316⋅log527 の値を求めます。2. 解き方の手順対数の底の変換公式 logab=logcblogca\log_a b = \frac{\log_c b}{\log_c a}logab=logcalogcb を用いて、それぞれの対数を共通の底(ここでは10)に変換します。log2125=log125log2=log53log2=3log5log2\log_2 125 = \frac{\log 125}{\log 2} = \frac{\log 5^3}{\log 2} = \frac{3 \log 5}{\log 2}log2125=log2log125=log2log53=log23log5log316=log16log3=log24log3=4log2log3\log_3 16 = \frac{\log 16}{\log 3} = \frac{\log 2^4}{\log 3} = \frac{4 \log 2}{\log 3}log316=log3log16=log3log24=log34log2log527=log27log5=log33log5=3log3log5\log_5 27 = \frac{\log 27}{\log 5} = \frac{\log 3^3}{\log 5} = \frac{3 \log 3}{\log 5}log527=log5log27=log5log33=log53log3したがって、log2125⋅log316⋅log527=3log5log2⋅4log2log3⋅3log3log5\log_2 125 \cdot \log_3 16 \cdot \log_5 27 = \frac{3 \log 5}{\log 2} \cdot \frac{4 \log 2}{\log 3} \cdot \frac{3 \log 3}{\log 5}log2125⋅log316⋅log527=log23log5⋅log34log2⋅log53log3=3log5⋅4log2⋅3log3log2⋅log3⋅log5=3⋅4⋅3=36= \frac{3 \log 5 \cdot 4 \log 2 \cdot 3 \log 3}{\log 2 \cdot \log 3 \cdot \log 5} = 3 \cdot 4 \cdot 3 = 36=log2⋅log3⋅log53log5⋅4log2⋅3log3=3⋅4⋅3=363. 最終的な答え36