$x = \frac{\sqrt{3}+1}{\sqrt{3}-1}$、 $y = \frac{\sqrt{3}-1}{\sqrt{3}+1}$ のとき、次の式の値を求めます。 (1) $x^3y + xy^3$代数学式の計算因数分解有理化式の値2025/5/241. 問題の内容x=3+13−1x = \frac{\sqrt{3}+1}{\sqrt{3}-1}x=3−13+1、 y=3−13+1y = \frac{\sqrt{3}-1}{\sqrt{3}+1}y=3+13−1 のとき、次の式の値を求めます。(1) x3y+xy3x^3y + xy^3x3y+xy32. 解き方の手順(1) x3y+xy3x^3y + xy^3x3y+xy3 を因数分解します。x3y+xy3=xy(x2+y2)x^3y + xy^3 = xy(x^2 + y^2)x3y+xy3=xy(x2+y2)x2+y2x^2+y^2x2+y2を(x+y)2(x+y)^2(x+y)2とxyxyxyを用いて変形します。xy(x2+y2)=xy((x+y)2−2xy)xy(x^2 + y^2) = xy((x+y)^2 - 2xy)xy(x2+y2)=xy((x+y)2−2xy)xxxとyyyの値を代入して、x+yx+yx+yとxyxyxyを計算します。x=3+13−1=(3+1)(3+1)(3−1)(3+1)=3+23+13−1=4+232=2+3x = \frac{\sqrt{3}+1}{\sqrt{3}-1} = \frac{(\sqrt{3}+1)(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} = \frac{3 + 2\sqrt{3} + 1}{3-1} = \frac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3}x=3−13+1=(3−1)(3+1)(3+1)(3+1)=3−13+23+1=24+23=2+3y=3−13+1=(3−1)(3−1)(3+1)(3−1)=3−23+13−1=4−232=2−3y = \frac{\sqrt{3}-1}{\sqrt{3}+1} = \frac{(\sqrt{3}-1)(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)} = \frac{3 - 2\sqrt{3} + 1}{3-1} = \frac{4 - 2\sqrt{3}}{2} = 2 - \sqrt{3}y=3+13−1=(3+1)(3−1)(3−1)(3−1)=3−13−23+1=24−23=2−3x+y=(2+3)+(2−3)=4x+y = (2+\sqrt{3}) + (2-\sqrt{3}) = 4x+y=(2+3)+(2−3)=4xy=(2+3)(2−3)=4−3=1xy = (2+\sqrt{3})(2-\sqrt{3}) = 4 - 3 = 1xy=(2+3)(2−3)=4−3=1したがって、xy((x+y)2−2xy)=1(42−2(1))=1(16−2)=14xy((x+y)^2 - 2xy) = 1(4^2 - 2(1)) = 1(16 - 2) = 14xy((x+y)2−2xy)=1(42−2(1))=1(16−2)=143. 最終的な答え14