与えられた式 $(x^2+5x)^2 + 10(x^2+5x)$ を因数分解します。

代数学因数分解二次方程式式の展開
2025/5/25

1. 問題の内容

与えられた式 (x2+5x)2+10(x2+5x)(x^2+5x)^2 + 10(x^2+5x) を因数分解します。

2. 解き方の手順

まず、x2+5xx^2+5xAA とおきます。すると、与えられた式は
A2+10AA^2 + 10A
となります。
この式は AA を共通因数としてくくり出すことができます。
A(A+10)A(A+10)
ここで、AAx2+5xx^2+5x に戻します。
(x2+5x)(x2+5x+10)(x^2+5x)(x^2+5x+10)
x2+5x=x(x+5)x^2+5x = x(x+5) なので、
x(x+5)(x2+5x+10)x(x+5)(x^2+5x+10)

3. 最終的な答え

x(x+5)(x2+5x+10)x(x+5)(x^2+5x+10)

「代数学」の関連問題

以下の6つの問題について、それぞれ $x$ に関する方程式または不等式を解き、$x$ の値を求めます。 (1) $2^{-3x} = \frac{1}{16}$ (2) $5^{2x+1} > 125...

指数対数不等式方程式
2025/5/25

2点$(-4, -2)$、$(8, 7)$を通る1次関数の式を、$y = \frac{サ}{シ}x + ス$の形で求める。

一次関数座標傾き切片
2025/5/25

グラフが2点(2, 7), (3, 0)を通る1次関数の式を求める問題です。1次関数の式は$y = ax + b$の形で表され、問題では$y = - クx + ケコ$の形となっています。

一次関数グラフ傾き切片
2025/5/25

点$(-2, -2)$を通り、直線$y = 4x + 3$に平行な一次関数の式を求める問題です。

一次関数平行傾き点の座標
2025/5/25

与えられた連立一次方程式 $ \begin{cases} x + 2y + 3z = 1 \\ 2x + y + 3z = 4 \\ 3x + ay + z = 0 \end{cases} $ が解な...

連立一次方程式線形代数行列行基本変形解の存在条件
2025/5/25

グラフに示された2つの直線①と②の式を求める問題です。直線①は $y = アx + イ$ の形式、直線②は $y = - \frac{ウ}{エ}x - オ$ の形式で表されています。グラフからそれぞれ...

一次関数グラフ傾きy切片直線の式
2025/5/25

水を入れたビーカーを熱し、熱し始めてから $x$ 分後の水の温度を $y$ ℃とするとき、 $x$ と $y$ の関係について、グラフは2点 $(0, 20)$ と $(5, 50)$ を通る直線上に...

一次関数グラフ方程式
2025/5/25

2点(0, 20)と(5, 50)を通る直線の式を求める問題です。直線の方程式は $y = ax + b$ の形で表され、その式を求めます。

一次関数直線の式傾きy切片
2025/5/25

比の式 $(x+2):3=5:x$ を解き、$x$ の値を求めます。

二次方程式因数分解代数
2025/5/25

一次関数 $y = 3x - 4$ において、$x$ の変域が $-1 < x \leq 3$ のとき、$y$ の変域を求める問題です。

一次関数変域不等式
2025/5/25