水を入れたビーカーを熱し、熱し始めてから $x$ 分後の水の温度を $y$ ℃とするとき、 $x$ と $y$ の関係について、グラフは2点 $(0, 20)$ と $(5, 50)$ を通る直線上にある。熱し始めてから6分後の水の温度を求める。

代数学一次関数グラフ方程式
2025/5/25

1. 問題の内容

水を入れたビーカーを熱し、熱し始めてから xx 分後の水の温度を yy ℃とするとき、 xxyy の関係について、グラフは2点 (0,20)(0, 20)(5,50)(5, 50) を通る直線上にある。熱し始めてから6分後の水の温度を求める。

2. 解き方の手順

与えられた2点 (0,20)(0, 20)(5,50)(5, 50) を通る直線の式を求める。
直線の傾き aa は、
a=502050=305=6a = \frac{50 - 20}{5 - 0} = \frac{30}{5} = 6
切片は (0,20)(0, 20) より20なので、直線の式は
y=6x+20y = 6x + 20
x=6x = 6 のときの yy の値を求める。
y=6×6+20=36+20=56y = 6 \times 6 + 20 = 36 + 20 = 56

3. 最終的な答え

56℃

「代数学」の関連問題

二次方程式 $2x^2 - 3x + 3 = -2x + 18$ を解きます。

二次方程式因数分解方程式の解
2025/5/25

与えられた方程式 $\frac{x^2-15}{3} + \frac{3x-15}{9} = 0$ を解く問題です。

二次方程式方程式因数分解代数
2025/5/25

$x^{1/2} + x^{-1/2} = 5$ のとき、次の式の値を求めよ。 (1) $x^{3/2} + x^{-3/2}$ (2) $x^2 + x^{-2}$

式の計算指数分数指数方程式
2025/5/25

整式 $P(x) = x^3 + 2(a+1)x^2 + 3ax - 2a$ が与えられている。ただし、$a$ は実数の定数である。 (1) $P(-2)$ の値を求める。 (2) $P(x)$ を因...

多項式因数分解解の公式判別式方程式実数解
2025/5/25

与えられた式 $\sqrt[3]{54} + \sqrt[3]{16} - \sqrt[3]{\frac{1}{4}}$ を簡略化して計算せよ。

根号立方根式の簡略化計算
2025/5/25

与えられた二次方程式の判別式 $D/4$ を計算し、$m$ の降べきの順に整理する。 与えられた方程式は $(9m^2+16)x^2 - 18m(mx-Y)x + 9(mx-Y)^2 - 144 = ...

二次方程式判別式因数分解二次関数式の展開
2025/5/25

与えられた2次方程式の判別式 $D/4$ が与えられています。この式を計算し、$m$ の降べきの順に整理する必要があります。判別式の式は次の通りです。 $D/4 = (-9m(mx-Y))^2 - (...

二次方程式判別式展開降べきの順
2025/5/25

与えられた二次方程式 $(9m^2 + 16)x^2 - 18m(mx - Y)x + 9(mx - Y)^2 - 144 = 0$ の判別式 $D$ を計算し、その $D/4$ が $D/4 = (...

二次方程式判別式展開整理数式処理
2025/5/25

与えられた二次方程式の判別式 $D/4$ を計算し、$m$ の降べきの順に整理する問題です。二次方程式は、 $(9m^2+16)x^2 - 18m(mx-Y)x + 9(mx-Y)^2 - 144 =...

二次方程式判別式展開整理降べきの順
2025/5/25

与えられた二次方程式 $(9m^2+16)x^2 - 18m(mx-Y)x + 9(mx-Y)^2 - 144 = 0$ の判別式 $D$ を求め、その半分である $D/4$ が与えられているので、そ...

二次方程式判別式展開代数計算
2025/5/25