$x^{1/2} + x^{-1/2} = 5$ のとき、次の式の値を求めよ。 (1) $x^{3/2} + x^{-3/2}$ (2) $x^2 + x^{-2}$代数学式の計算指数分数指数方程式2025/5/251. 問題の内容x1/2+x−1/2=5x^{1/2} + x^{-1/2} = 5x1/2+x−1/2=5 のとき、次の式の値を求めよ。(1) x3/2+x−3/2x^{3/2} + x^{-3/2}x3/2+x−3/2(2) x2+x−2x^2 + x^{-2}x2+x−22. 解き方の手順(1) x1/2+x−1/2=5x^{1/2} + x^{-1/2} = 5x1/2+x−1/2=5 の両辺を3乗する。(x1/2+x−1/2)3=53(x^{1/2} + x^{-1/2})^3 = 5^3(x1/2+x−1/2)3=53x3/2+3(x1/2)2(x−1/2)+3(x1/2)(x−1/2)2+x−3/2=125x^{3/2} + 3(x^{1/2})^2(x^{-1/2}) + 3(x^{1/2})(x^{-1/2})^2 + x^{-3/2} = 125x3/2+3(x1/2)2(x−1/2)+3(x1/2)(x−1/2)2+x−3/2=125x3/2+3x+3x−1+x−3/2=125x^{3/2} + 3x + 3x^{-1} + x^{-3/2} = 125x3/2+3x+3x−1+x−3/2=125x3/2+x−3/2+3(x1/2+x−1/2)=125x^{3/2} + x^{-3/2} + 3(x^{1/2} + x^{-1/2}) = 125x3/2+x−3/2+3(x1/2+x−1/2)=125x3/2+x−3/2+3(5)=125x^{3/2} + x^{-3/2} + 3(5) = 125x3/2+x−3/2+3(5)=125x3/2+x−3/2=125−15x^{3/2} + x^{-3/2} = 125 - 15x3/2+x−3/2=125−15x3/2+x−3/2=110x^{3/2} + x^{-3/2} = 110x3/2+x−3/2=110(2) x1/2+x−1/2=5x^{1/2} + x^{-1/2} = 5x1/2+x−1/2=5 の両辺を2乗する。(x1/2+x−1/2)2=52(x^{1/2} + x^{-1/2})^2 = 5^2(x1/2+x−1/2)2=52x+2(x1/2)(x−1/2)+x−1=25x + 2(x^{1/2})(x^{-1/2}) + x^{-1} = 25x+2(x1/2)(x−1/2)+x−1=25x+2+x−1=25x + 2 + x^{-1} = 25x+2+x−1=25x+x−1=23x + x^{-1} = 23x+x−1=23両辺を2乗する。(x+x−1)2=232(x + x^{-1})^2 = 23^2(x+x−1)2=232x2+2(x)(x−1)+x−2=529x^2 + 2(x)(x^{-1}) + x^{-2} = 529x2+2(x)(x−1)+x−2=529x2+2+x−2=529x^2 + 2 + x^{-2} = 529x2+2+x−2=529x2+x−2=529−2x^2 + x^{-2} = 529 - 2x2+x−2=529−2x2+x−2=527x^2 + x^{-2} = 527x2+x−2=5273. 最終的な答え(1) x3/2+x−3/2=110x^{3/2} + x^{-3/2} = 110x3/2+x−3/2=110(2) x2+x−2=527x^2 + x^{-2} = 527x2+x−2=527