2点(0, 20)と(5, 50)を通る直線の式を求める問題です。直線の方程式は $y = ax + b$ の形で表され、その式を求めます。

代数学一次関数直線の式傾きy切片
2025/5/25

1. 問題の内容

2点(0, 20)と(5, 50)を通る直線の式を求める問題です。直線の方程式は y=ax+by = ax + b の形で表され、その式を求めます。

2. 解き方の手順

まず、直線の傾きaaを求めます。傾きは、2点間のy座標の差をx座標の差で割ることで求められます。
a=y2y1x2x1a = \frac{y_2 - y_1}{x_2 - x_1}
与えられた2点(0, 20)と(5, 50)を代入します。
a=502050=305=6a = \frac{50 - 20}{5 - 0} = \frac{30}{5} = 6
したがって、直線の傾きは6です。
次に、y切片bbを求めます。点(0, 20)はy切片を示しているので、b=20b = 20です。
あるいは、傾きa=6a=6と点(5, 50)を直線の式 y=ax+by = ax + b に代入して計算することもできます。
50=6×5+b50 = 6 \times 5 + b
50=30+b50 = 30 + b
b=5030=20b = 50 - 30 = 20
したがって、直線の式は y=6x+20y = 6x + 20 となります。

3. 最終的な答え

y=6x+20y = 6x + 20

「代数学」の関連問題

与えられた式 $\sqrt[3]{54} + \sqrt[3]{16} - \sqrt[3]{\frac{1}{4}}$ を簡略化して計算せよ。

根号立方根式の簡略化計算
2025/5/25

与えられた二次方程式の判別式 $D/4$ を計算し、$m$ の降べきの順に整理する。 与えられた方程式は $(9m^2+16)x^2 - 18m(mx-Y)x + 9(mx-Y)^2 - 144 = ...

二次方程式判別式因数分解二次関数式の展開
2025/5/25

与えられた2次方程式の判別式 $D/4$ が与えられています。この式を計算し、$m$ の降べきの順に整理する必要があります。判別式の式は次の通りです。 $D/4 = (-9m(mx-Y))^2 - (...

二次方程式判別式展開降べきの順
2025/5/25

与えられた二次方程式 $(9m^2 + 16)x^2 - 18m(mx - Y)x + 9(mx - Y)^2 - 144 = 0$ の判別式 $D$ を計算し、その $D/4$ が $D/4 = (...

二次方程式判別式展開整理数式処理
2025/5/25

与えられた二次方程式の判別式 $D/4$ を計算し、$m$ の降べきの順に整理する問題です。二次方程式は、 $(9m^2+16)x^2 - 18m(mx-Y)x + 9(mx-Y)^2 - 144 =...

二次方程式判別式展開整理降べきの順
2025/5/25

与えられた二次方程式 $(9m^2+16)x^2 - 18m(mx-Y)x + 9(mx-Y)^2 - 144 = 0$ の判別式 $D$ を求め、その半分である $D/4$ が与えられているので、そ...

二次方程式判別式展開代数計算
2025/5/25

4次式 $x^4 + 5x^3 + 6x^2 + kx - 8$ が $(x^2+ax+4)(x^2+bx-c)$ と因数分解されるとき、以下の問いに答える問題です。 (1) $c$ の値を求める。 ...

因数分解多項式二次方程式解の公式4次式
2025/5/25

$a, b$ は実数とする。3次方程式 $x^3 + ax^2 + bx - 4 = 0$ が $1+i$ を解にもつとき、定数 $a, b$ の値と他の解を求めよ。

三次方程式複素数解と係数の関係共役複素数
2025/5/25

3次方程式 $x^3 + ax^2 - 17x + b = 0$ は、$x = -1$ と $x = -3$ を解に持つ。 (1) 定数 $a, b$ の値を求めよ。 (2) この方程式の他の解を求め...

3次方程式解の公式因数定理多項式の割り算
2025/5/25

与えられた方程式の別の解を求める問題です。ただし、方程式自体が画像に書かれていないため、解きようがありません。一般的に、すでに一つの解が分かっている場合、方程式を因数分解するなどして、他の解を見つける...

方程式因数分解
2025/5/25