$(\sqrt{2} - \sqrt{3})(\sqrt{2} - \sqrt{3})$ を計算してください。

代数学平方根式の展開計算
2025/5/25

1. 問題の内容

(23)(23)(\sqrt{2} - \sqrt{3})(\sqrt{2} - \sqrt{3}) を計算してください。

2. 解き方の手順

与えられた式を展開します。
(23)(23)=(23)2(\sqrt{2} - \sqrt{3})(\sqrt{2} - \sqrt{3}) = (\sqrt{2} - \sqrt{3})^2
(ab)2=a22ab+b2(a-b)^2 = a^2 - 2ab + b^2 を用いると、
(23)2=(2)22(2)(3)+(3)2(\sqrt{2} - \sqrt{3})^2 = (\sqrt{2})^2 - 2(\sqrt{2})(\sqrt{3}) + (\sqrt{3})^2
=226+3= 2 - 2\sqrt{6} + 3
=526= 5 - 2\sqrt{6}

3. 最終的な答え

5265 - 2\sqrt{6}

「代数学」の関連問題

2次方程式 $x^2 + (m-3)x + 1 = 0$ が異なる2つの虚数解を持つとき、定数 $m$ の値を求めよ。

二次方程式判別式虚数解不等式
2025/5/25

与えられた式 $(x-3)^2(x+3)^2$ を展開すること。

式の展開因数分解二次式の展開公式
2025/5/25

問題26は、与えられた2つのベクトル$\vec{a}$と$\vec{b}$が垂直になるような$x$の値を求める問題です。2つの小問題があります。問題27は、ベクトル$\vec{a}=(-3, 1)$に...

ベクトル内積垂直単位ベクトル
2025/5/25

(1) 与えられた分数式を部分分数分解し、その係数$a, b, c, d$を求める問題。 (2) $x, y, z$ が $x-2y+z = 4$ と $2x+y-3z = -7$ を満たすとき、$a...

部分分数分解連立方程式係数比較代入法
2025/5/25

与えられた行列が正則かどうかを判定し、正則である場合は逆行列を求める問題です。問題は (1) と (2) の2つの行列について解く必要があります。 (1) $A = \begin{pmatrix} 3...

行列逆行列行列式線形代数正則行列行基本変形
2025/5/25

不等式 $4-x \le 3x \le 2x+a$ を満たす整数 $x$ がちょうど3個存在するような定数 $a$ の値の範囲を求める問題です。

不等式整数解範囲代数
2025/5/25

$2(x+1)^4 + 2(x-1)^4 + 5(x^2-1)^2$ を因数分解せよ。

因数分解多項式展開平方完成
2025/5/25

与えられた式 $a(b-c)^2 + b(c-a)^2 + c(a-b)^2 + 8abc$ を因数分解する。

因数分解多項式
2025/5/25

与えられた式 $2x^2 - 5xy - 3y^2 - x + 10y - 3$ を因数分解します。

因数分解多項式
2025/5/25

2次方程式 $x^2 + 3x - 1 = 0$ の2つの解を$\alpha, \beta$ とするとき、以下の式の値を求めます。 (1) $\alpha^2 + \beta^2$ (2) $(\al...

二次方程式解と係数の関係解の計算
2025/5/25