1. 問題の内容
関数 () について、最大値を求める問題です。
2. 解き方の手順
まず、与えられた二次関数を平方完成します。
この関数の軸は です。定義域が であるため、 の値によって最大値を取る の値が変わります。
(i) つまり のとき、定義域の中で で最大値を取ります。
最大値は となります。
(ii) のとき、定義域の中で で最大値を取ります。
最大値は となります。
(iii) つまり のとき、軸 が定義域に含まれるため、 または のどちらかで最大値をとります。
のとき、。
のとき、。
のとき であり、 。
のとき であり、 。
したがって、 のとき最大値は 。
のとき最大値は 。
まとめると、
のとき、最大値は
のとき、最大値は
のとき、最大値は
のとき、最大値は
したがって、
のとき、最大値は
のとき、最大値は
3. 最終的な答え
のとき、最大値は
のとき、最大値は