与えられた関数を $t$ で微分する問題です。関数は $\frac{d}{dt} \left(5 - \frac{d}{dt}\right) [\sin(5t - 2) - \cos(5t - 2)]$ です。解析学微分三角関数合成関数2025/5/251. 問題の内容与えられた関数を ttt で微分する問題です。関数は ddt(5−ddt)[sin(5t−2)−cos(5t−2)]\frac{d}{dt} \left(5 - \frac{d}{dt}\right) [\sin(5t - 2) - \cos(5t - 2)]dtd(5−dtd)[sin(5t−2)−cos(5t−2)] です。2. 解き方の手順まず、内側の微分を実行します。ddt[sin(5t−2)−cos(5t−2)]=ddtsin(5t−2)−ddtcos(5t−2)\frac{d}{dt} [\sin(5t - 2) - \cos(5t - 2)] = \frac{d}{dt} \sin(5t - 2) - \frac{d}{dt} \cos(5t - 2)dtd[sin(5t−2)−cos(5t−2)]=dtdsin(5t−2)−dtdcos(5t−2)ここで、ddtsin(5t−2)=5cos(5t−2)\frac{d}{dt} \sin(5t - 2) = 5\cos(5t - 2)dtdsin(5t−2)=5cos(5t−2) および ddtcos(5t−2)=−5sin(5t−2)\frac{d}{dt} \cos(5t - 2) = -5\sin(5t - 2)dtdcos(5t−2)=−5sin(5t−2) であるため、ddt[sin(5t−2)−cos(5t−2)]=5cos(5t−2)−(−5sin(5t−2))=5cos(5t−2)+5sin(5t−2)\frac{d}{dt} [\sin(5t - 2) - \cos(5t - 2)] = 5\cos(5t - 2) - (-5\sin(5t - 2)) = 5\cos(5t - 2) + 5\sin(5t - 2)dtd[sin(5t−2)−cos(5t−2)]=5cos(5t−2)−(−5sin(5t−2))=5cos(5t−2)+5sin(5t−2).したがって、与えられた式はddt(5−ddt)[sin(5t−2)−cos(5t−2)]=ddt[5(sin(5t−2)−cos(5t−2))−(5cos(5t−2)+5sin(5t−2))]\frac{d}{dt} \left(5 - \frac{d}{dt}\right) [\sin(5t - 2) - \cos(5t - 2)] = \frac{d}{dt} [5(\sin(5t - 2) - \cos(5t - 2)) - (5\cos(5t - 2) + 5\sin(5t - 2))]dtd(5−dtd)[sin(5t−2)−cos(5t−2)]=dtd[5(sin(5t−2)−cos(5t−2))−(5cos(5t−2)+5sin(5t−2))]=ddt[5sin(5t−2)−5cos(5t−2)−5cos(5t−2)−5sin(5t−2)]= \frac{d}{dt} [5\sin(5t - 2) - 5\cos(5t - 2) - 5\cos(5t - 2) - 5\sin(5t - 2)]=dtd[5sin(5t−2)−5cos(5t−2)−5cos(5t−2)−5sin(5t−2)]=ddt[−10cos(5t−2)]= \frac{d}{dt} [-10\cos(5t - 2)]=dtd[−10cos(5t−2)]=−10ddtcos(5t−2)= -10 \frac{d}{dt} \cos(5t - 2)=−10dtdcos(5t−2)=−10(−5sin(5t−2))= -10(-5\sin(5t - 2))=−10(−5sin(5t−2))=50sin(5t−2)= 50\sin(5t - 2)=50sin(5t−2).3. 最終的な答え50sin(5t−2)50\sin(5t - 2)50sin(5t−2)