図に示された作図方法に関する問題です。具体的には、作図方法の(2)で円の中心となる点、(3)で円の半径となる長さ、(4)で直線が通る点をそれぞれ選択肢から選びます。

幾何学作図直線幾何学的考察
2025/3/8

1. 問題の内容

図に示された作図方法に関する問題です。具体的には、作図方法の(2)で円の中心となる点、(3)で円の半径となる長さ、(4)で直線が通る点をそれぞれ選択肢から選びます。

2. 解き方の手順

(2)点セ:手順(2)では、点「セ」を中心として半径BEの円を描くため、点「セ」は点Bであると考えられます。
(3)半径ソ:手順(3)では、点Bを中心として、(2)で描いた円との交点をQとするような円を描きます。点Qは、点Bを中心とする半径BEの円周上にあり、また点Bを中心とする円周上にもあります。したがって、点Bを中心とする円の半径はBEであると考えられます。
(4)点タ:手順(4)では、点「タ」と点Qを通る直線を引き、線分ABとの交点をPとします。図から、点Cと点Qを通る直線がABと交わる点がPになっていると考えられるので、点「タ」は点Cであると考えられます。

3. 最終的な答え

(2)点セ:B
(3)半径ソ:BE
(4)点タ:C

「幾何学」の関連問題

1組の三角定規を組み合わせてできる、図の角度を求めよ。

角度三角定規三角形
2025/6/3

問題は、2つの三角定規を組み合わせて作られた図形の、指定された角度(図中の「あ」の角度)を求めるものです。

角度三角定規三角形
2025/6/3

三角定規を組み合わせてできた角度「あ」の角度を求める問題です。

角度三角定規角度の計算
2025/6/3

2つの三角定規を組み合わせた図において、角「あ」の角度を求める問題です。

角度三角定規三角形
2025/6/3

問題は、2つの三角定規を組み合わせてできる角度を求める問題です。画像から、求めたい角度は、三角定規の角度を足し合わせたものだとわかります。

角度三角定規三角形
2025/6/3

1組の三角定規を組み合わせてできる、図中の「あ」の角度を求める問題です。

角度三角定規図形三角形
2025/6/3

極座標の方程式を直交座標の方程式に変換する問題です。問題文には、極座標と直交座標の変換公式として、$r\cos\theta = x$, $r\sin\theta = y$, $r^2 = x^2 + ...

極座標直交座標座標変換双曲線
2025/6/3

半径1の円に $AB = BC$ の二等辺三角形 $ABC$ が内接している。$\angle BAC = 2\theta$ とするとき、三角形 $ABC$ の周の長さ $M$ を $\theta$ の...

二等辺三角形正弦定理三角関数周の長さ
2025/6/3

$\triangle ABC$ において、$AB = 4$, $AC = 5$, $\angle BAC = 120^\circ$ とする。$\angle BAC$ の二等分線と辺 $BC$ との交点...

三角形角度二等分線余弦定理面積三角比
2025/6/3

点Bが線分FAを1:2に外分するとき、点Fの座標を求めよ。ただし、点Aと点Bの座標はそれぞれ与えられているものとする。

座標線分の外分内分座標計算
2025/6/3