$x = \frac{1}{\sqrt{5}+\sqrt{3}}$、 $y = \frac{1}{\sqrt{5}-\sqrt{3}}$ のとき、$x^3 + y^3$ の値を求めなさい。代数学式の計算有理化因数分解立方和2025/5/261. 問題の内容x=15+3x = \frac{1}{\sqrt{5}+\sqrt{3}}x=5+31、 y=15−3y = \frac{1}{\sqrt{5}-\sqrt{3}}y=5−31 のとき、x3+y3x^3 + y^3x3+y3 の値を求めなさい。2. 解き方の手順まず、xxxとyyyをそれぞれ有理化します。x=15+3=5−3(5+3)(5−3)=5−35−3=5−32x = \frac{1}{\sqrt{5}+\sqrt{3}} = \frac{\sqrt{5}-\sqrt{3}}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})} = \frac{\sqrt{5}-\sqrt{3}}{5-3} = \frac{\sqrt{5}-\sqrt{3}}{2}x=5+31=(5+3)(5−3)5−3=5−35−3=25−3y=15−3=5+3(5−3)(5+3)=5+35−3=5+32y = \frac{1}{\sqrt{5}-\sqrt{3}} = \frac{\sqrt{5}+\sqrt{3}}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})} = \frac{\sqrt{5}+\sqrt{3}}{5-3} = \frac{\sqrt{5}+\sqrt{3}}{2}y=5−31=(5−3)(5+3)5+3=5−35+3=25+3次に、x+yx+yx+y と xyxyxy の値を求めます。x+y=5−32+5+32=252=5x+y = \frac{\sqrt{5}-\sqrt{3}}{2} + \frac{\sqrt{5}+\sqrt{3}}{2} = \frac{2\sqrt{5}}{2} = \sqrt{5}x+y=25−3+25+3=225=5xy=5−32⋅5+32=5−34=24=12xy = \frac{\sqrt{5}-\sqrt{3}}{2} \cdot \frac{\sqrt{5}+\sqrt{3}}{2} = \frac{5-3}{4} = \frac{2}{4} = \frac{1}{2}xy=25−3⋅25+3=45−3=42=21x3+y3x^3+y^3x3+y3 を (x+y)(x+y)(x+y) と xyxyxy で表します。x3+y3=(x+y)3−3xy(x+y)x^3+y^3 = (x+y)^3 - 3xy(x+y)x3+y3=(x+y)3−3xy(x+y)求めた x+yx+yx+y と xyxyxy の値を代入します。x3+y3=(5)3−3⋅12⋅5=55−325=105−352=752x^3+y^3 = (\sqrt{5})^3 - 3 \cdot \frac{1}{2} \cdot \sqrt{5} = 5\sqrt{5} - \frac{3}{2}\sqrt{5} = \frac{10\sqrt{5} - 3\sqrt{5}}{2} = \frac{7\sqrt{5}}{2}x3+y3=(5)3−3⋅21⋅5=55−235=2105−35=2753. 最終的な答え725\frac{7}{2}\sqrt{5}275